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Role of biases in on-line learning of two-layer networks
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The influence of biases on the learning dynamics of a two-layer neural network, a normalized soft-
committee machine, is studied for on-line gradient descent learning. Within a statistical mechanics framework,
numerical studies show that the inclusion of adjustable biases dramatically alters the learning dynamics found
previously. The symmetric phase that has often been predominant in the original model all but disappears for
a nondegenerate bias task. The extended model furthermore exhibits a much richer dynamical behavior, e.g.,
attractive suboptimal symmetric phases even for realizable cases and noiseld&1@%3-651X98)14702-5

PACS numbdis): 87.10+€, 05.20--y, 02.50-r, 02.30.Hq

I. INTRODUCTION cases. Second, examples are not resampled, describing a sce-
nario with an unrealistically large training set compared to
The theoretical understanding of the learning dynamics ofnost real cases, where training examples are scarce and
multilayer feedforward perceptrongMLPs) has attracted therefore repeatedly cycled over. This problem has so far
widespread interest due to their universal approximatiorProved evasive, although the issue has been considered at
ability [1] and their subsequent paramount use in practicaleast for the linear perceptrdid]. Third, the hidden-output
applications. Until recently progress has been hampered byeights are kept fixed, a constraint that has been relaxed in
the inability to perform the necessafguencheyl average 6,7], where it has been shown that the learning dynamics are
over the training set in order to study their performance in-usually dominated by the input-hidden weights. Fourth, the
dependent of the particularities of an individual training set.biases of the hidden units are fixed to zero, a constraint that
A method to overcome this problem has been introduceds actually more severe than fixing the hidden-output
recently in[2]. It studieson-line learning in two-layer net- Weights. One can sho{8] that soft-committee machines are
works with an arbitrary number of hidden units, allowing Universal approximators provided one allows for adjustable
insight into the learning behavior of neural network modelsbiases in the hidden layer.
whose complexity is of the same order as those used in real In this paper, we address the fourth limitation by studying
world applications. the model of a normalized soft-committee machine with dy-
The on-line learning paradigm, whereby the network pa-namic biases following the framework set ouf2]. In Sec.
rameters are updated seria”y after the presentation of eadhthe model is defined and the calculation of the differential
single example, allows one to avoid the difficulties of aver-equations governing the training evolution is derived. In Sec.
aging over a wholefinite) training set necessary for the !l numerical studies of a few typical learning scenarios are
more commonly studiebatchlearning algorithm, where all presented to show the qualitative difference in the dynamics
examples are used simultaneously to update the network p& the model with fixed biases, most notably the emergence
rameters. The network model studied, in particular, the softof attractive suboptimal network configurations. These and
committee machind3], consists of a single hidden layer their dependence on the teacher task, the influence of weight
with adjustable input-hidden, but fixed hidden-outputand bias initialization, and the choice of the learning rates for
Weights_ The average |earning dynamics of these networkweights and biases will be studied in Sec. IV. We will also
are calculated in the thermodynamic limit of infinite input St our results in context to previous works on weight initial-
dimensions and in a student-teacher scenario, whestu-a  ization that devised heuristic rules. In Sec. V the optimal
dent network is presented with training exampleg*(*). learning rates are calculated analytically for arbitrary net-
The input vectors?” are Gaussian random variables and theWork size and a range of teacher tasks for the convergence
outputs ¢# are labeled by aeachernetwork of the same phase, where the student network is close to the optimal
architecture but possib]y with a different number of hiddenSOlUtion. In Sec. VI we will outline pOSSible extensions of
units. Although the framework allows in principle for any this framework and in particular briefly assess the impact of
on-line learning algorithm to update the student parametetnrealizable teacher rules. This is followed by a summary
gradient descent on the squared example error is studiedd discussion of the main results in Sec. VII.
here.
The above Iea}rning scenario is already quite similar. to the IIl. DYNAMICAL EQUATIONS
problems faced in the real world, but the approach still suf-
fers from several drawbacks. First, the analysis of the mean The student network considered is a normalized soft-
learning dynamics relies on the thermodynamic limit of infi- committee machine df hidden units with adjustable biases.
nite input dimension—a problem that has been addressed Bach hidden unit consists of a biag; and a weight vector
[4], where finite size effects have been studied and it wa®V;, which is connected to thN-dimensional inputst. All
shown that the thermodynamic limit is relevant in mosthidden units are connected to a linear output unit with arbi-
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trary but fixed gainy by couplings of fixed strength. The The above Markovian stochastic dynamids are hard to
activation of any unit is normalizefby the inverse square solve generally since this necessitates solving a master equa-
root of the number of weight connections into the yrétl-  tion for the time evolution of the weight and bias probability
lowing all weights to be ofo(1)magnitude, independent of distributions. Usually approximations such as small learning
the input dimension or the number of hidden units. Note thatates must be employdd1] to make any progress.

this is in contrast to most other on-line learning literature However, one is ultimately interested mainly in the typi-
(e.g.,[3]); however, this makes the necessary scaling of theal performance of the student network on a randomly se-
learning rates more explicit and leads to more elegant resuliected input example given by tteeneralization error

for optimal learning rates. The implemented mapping of a

student with parametei®={W,, 6,} is therefore €q(Q)=(€e(2,9));. (5)

y K Since the dependence of the inputs enter only through the
o(£Q)= _Klzl 9(xi—6), (D student and teacher activationg=(xy, ... Xx) and
y=(Y1, - - -,¥Ym), the probability of & can be rewritten in

Wherexi=Wi-§/\/N is the student activation ang() is a terms of a joint probability distribution in the activations.
sigmoidal transfer function. Note that although the biased N€ resulting distribution is Gaussian with zero mean as
add onlyK degrees of freedom to the network, their influ- <Xi>§:<yn>§_:0 and a covariance matri@ whose compo-
ence on the hidden unit response is still of the same order g¥NtS are given by the order parameters describing the over-
the complete weight vector. laps between student and teacher nodes:

The map to be learned is defined by a teacher network of )

the same architecture except for a possible difference in the e T W W= 120
number of hidden unitd and is defined by the weight vec- (i) N Wi Wy =07 Qi (63
torsB,, and biase®,, (n=1, ... M). Training examples are
of the form (&*,{*), where the components of the input vec- o? )
tors & are drawn independently from a zero-mean Gaussian <Xiyn>§:WWi ‘Bp=0"Ris, (6b)
distribution with arbitrary variances®> and the outputs are
labeled by the teacher according to o2
y M <ynym>§: WBn' Bm= UzTnm- (60
H=—=2 g(yh—en), v
Mn=1

Since also the weights solely enter through the activations,
where y“=B. . £/\N is the activation of teacher hidden the generalization error must be a function of these order
n . . .
unit n. l\?ote that we will use indicegj,k,| to refer to units parqme_ters and the plasasan_dgn only. This _prowdes the
in the student network and,m for units in the teacher net- motivation for replacing the difference equatio for the
work ' weightsW, by difference equations fo®;; andR;,, which
In on-line learning the student paramet€rsare modified replace thew; as dynamical variables, whereas thg, are

h h k . fixed and given by the_tas_k._
g))(;(rer(]j;c;eé Elg.rror the student makes on a presented smgﬂé In the thermodynamic limitfl— o), the dynamical order

parameters);; and R;, become self-averaging with respect
Q&)=L o(&:.0)]~ (3)  tothe randomness in the training data; i.e., their probability

distributions becomé functions at their mean value, and it
Gradient descent on the err@®), in this scenario commonly is sufficient to study their mean evolution by averaging over
identified withback-propagatiori9,10], results in updates of the input distribution or rather the joint Gaussian distribution

the student parameters of the activations.
Although it is known that self-averaging holds for
a1 g " & overlap-type order parameter dynamics, this is not entirely
Wi = W= 4 \/_N (48 self-evident for the bias dynamics and one anticipates that

the updates of the biases have to be@f1l/N), i.e., the bias
learning rate needs to be scaled bi1This has been con-
", (4b)  firmed by extensive simulations for a number of finite system
sizesN, which conclusively show that the bias dynamics are
also self-averaging and their variances exhibitd &¢aling
behavior. For the details of the simulations we refer the
St= g (XE— 0) =[*— o (£Q)]9' (X*— 6)), rea_der to S_ec. ll. In the case of adjustable hidden-output
(40) weights, a rigorous progfvhich can be extended to apply to
biase$ for self-averaging for O(1/N) updates is given in
whereg’ is the derivative of the activation functiam The  [7].
two learning ratesy,, for the weights andy, for the biases If one further interprets the normalized example number
(which has been rescaled explicitly byN)/ have to be set a=u/N as a continuous time variable, the difference equa-
by the user to ensure both fast training and convergence tot&ons can be conveniently rewritten as first-order coupled dif-
minimum of the generalization error. ferential equations:

s

aiu+l_ 0#: N

with
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dQ;; ) neric tasks. In the original model with fixed biag@$, it has
T = TKOXH 6X) et {81 6)) ¢ (78 been found useful to classify a learning scenario according to
the isotropy of its teacher weight vectors. Tasks with very
d similar norms of the hidden unit weight vectors exhibit a
ﬁ: 7k 8 e (7b) much longer training time than tasks with strongly graded

da norms, which can especially be attributed to the problem of

symmetry breaking in the space of the student hidden units.
de, This may be caused somewhat by the identical output distri-
da 76 5i)e- (79 putions of the individual teacher hidden units with the same

norm. Only the differences in the initial student-teacher over-

The scaling of the bias learning rate witiNLmay suggest laps R, introduced by the random initial conditions allow
that the dynamics of the biases and the weights are mighe student hidden units to distinguish between the teacher
matched in this framework for at least some of the Iearnini‘l‘idden units in this case. For graded teacher lengths, the
StaQQS, |eading to an 0pt|ma| |earning rate for the biases idden unit OUtpUt diStrib-UtionS still have zero mean but dif-
infinity. This effect has already been observed in the case der in the variance and higher cumulants. In this case, asym-
adaptive hidden-output weighfg]. metric initialization of the student-student overlaQs; is

For dynamics on different time scales or different order ofsufficient to break student node symmetry.
learning rates, it is natural to apply the method of adiabatic The extra degrees of freedom introduced by the biases
elimination[12] to the fast variables, here the hidden-outputshould have similar symmetry breaking effects. For simplic-
weights or biases. In this approximation, it is assumed thaity, assume for the moment that the teacher weight vectors
the fast variables driven by the large learning rates are forced@re isotropic. In the case that all teacher biases are degener-
to relax to an attractive fixed point of their dynamics assum-ate @,=¢), the identical hidden unit output distributions
ing the slow variables, i.e., input-hidden weight order pa-are shifted, with means
rameters, to be constant. This method has already been em-

ployed successfully for adaptive hidden-output weidfits (9(Yn—0m) = — On )
where it has been shown also that the ensuing dynamics for 9¥n=@en)le= "0 /1+-|-nn '

the order parameters are again self-averaging. One can fur-
ther show[13] that adiabatic elimination for the hidden- Again, one finds that only asymmetric initial conditions of
output weights is not only locally optimal by minimizing the the student-teacher overlaRg, can break the symmetry. If,
generalization error with respect to the hidden-outputhowever, the teacher biases are nondegenerate, the teacher
weights instantly but also globally optimal. In the case ofhidden unit output distributions are all different, e.g., have
adiabatic elimination of the bias dynamics, neither can beshifted means. In this case, asymmetric initial values of the
shown since the equilibrium values of the biases are calcustudent biases are sufficient to break the student hidden-unit
lated from a set of nonlinear equations, whereas the equilibsymmetry. We will later see that this symmetry breaking
rium of the hidden-output weights is given by a set of lineareffect is stronger than that introduced by graded teacher
equations. Furthermore, the solution of the nonlinear set oiengths. For graded teachers, the only obvious choice for
equations does not necessarily need to be unique, a problefdegenerate” teacher biases @&,=0. For nonzero teacher
that can be removed by demanding that the bias dynamidsiases, the mean of the output distribution will shift accord-
should relax dynamically to an attractive solution from theiring to Eq.(8). The choicep,,= ¢ leads to student hidden unit
previous equilibrium values. A detailed treatment wouldsymmetry breaking even for identical initial weight vectors
therefore go beyond the scope of this paper although we wilhs long as the initial student biases are not identical as well,
present some results derived by this approximation wherelearly a sign of “nondegenerate” biases when compared to
deemed appropriate. isotropic teacher weights. Two other possible scalingtaesa
Most integrations in Eqs(7) can be performed analyti- for “degenerate” teacher biases in the case of graded teacher
cally for the choice of the error functiog,(x) = erf(vx/2) lengths are
as the sigmoidal transfer function, but for single Gaussian
integrals remaining fow;vzv terms and the generalization error. A
For the exact form of the dynamical equations and the gen- @ Ji+T’ (9a)
eralization error the reader is referred to Appendix A. We
only mention in passing that the variance of the input distri-
bution o> merely rescales the weight order parameters and o=—,
the weight learning rates by?. The sigmoidal gairv res- N
cales the weight order parameters and weight learning rate "
by 12 and the biases and bias learning ratevbyrhe output Where ¢ restores identical means of the individual teacher
gain y rescales all learning rates by’. In the following  hidden unit output distributions, whereagestores identical
these parameters are therefore set to one without loss of gedistances of the decision hyperpldirethe following termed
erality. abscissa of the sigmoidal transfer function to the origin.
Before we will present some typical results for the train-Neither of these ansze (or any other ansatz inspired by
ing evolution by numerically integrating the differential numerical resulisseems to restore “degenerate” teacher bi-
equations(7), we would like to classify the huge variety of ases perfectly, reflecting the fact that it is impossible to pre-
learning scenarios in this framework into some distinct gesserve output distribution symmetries for nonzero means, due

(9b)
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to the skewed distributions induced by the nonlinearity.teacher overlapsR;, are always randomized as suggested
However, once the teacher lengths and one teacher bias above.
fixed, one can numerically always find a set of teacher biases In our first exampldFig. 1), we demonstrate the potential
that exhibit at least a very slow learning progress. Unfortuinfluence of the adjustable biases in the learning dynamics of
nately, we have not been able to find a consistent ansatz thtte soft-committee machine model, by comparing two typi-
can predict these correctly, although they are in many casesal realizable learning tasksK&M=2) with isotropic
close to the values given by the ansé@a). In general, we teacher weight vectorg' (T,,= &,,). The student param-
have found this ansatz more useful in most cases and we widlters denoted by * represent a learning scenario in the origi-
therefore tern‘é the effective bias nal model, where both student and teacher lack biases, i.e.,
Summarizing the above argument, it makes sense to clagi=0 and¢,=0. The other scenarios feature student net-
sify teacher tasks according to the following two criteria:  Works from the extended model, i.e., with adjustable biases.
(i) Degree of isotropy in the teacher norms. |sotr0picThey are trained by an isotropic teacher task with small non-
teacher tasks are defined by similar weight vector lengthdegenerate biasesp{,=+0.1). For both scenarios, the
(Tam=Té,m), Whereas graded teacher tasks feature normkarning rate and the initial conditions were judiciously
with different values. These are referred to Hsand 79  chosen to be 7,=2.0, Q;;=0.1, Q»,=0.2, R,=0Q1,
respectively. =U[-10 210 *?] with #,=0.0 and#,=0.5 for the stu-
(i) Degree of degeneracy in the student biases. For isadent with adjustable biases.
tropic teacher weights, degenerate teacher tasks are defined|n poth cases, the student weight vectfgy. 1(a)] are
by similar biases ¢,= ¢), whereas nondegenerate teacherdgrawn quickly from their initial values into a suboptimal
tasks exhibit biases with distinct values. These tasks are r%ymmetric phase, characterized by the lack of specia"zaﬂon
ferred to as7y and7,,, respectively. of the student hidden units on a particular teacher hidden
For graded teacher weights, degenerate biases as such @fgt, as can be depicted from the similar valueRgfin Fig.
only given for ¢,=0, although one can also find sets of 1(b). This symmetry is broken almost immediately in the
nonzero biases numerically that are approximately “degentearning scenario with adjustable student biases and nonde-
erate.” generate teacher biases. The student converges quickly to the
optimal solution, characterized by the evolution of the over-
lap matriceQ,R and biased® [see Fig. 1c)] to their optimal
IIl. TYPICAL EVOLUTION valuesT and g (up to the permutation symmetry due to the
OF THE DYNAMICAL EQUATIONS arbitrary labeling of the student nodekikewise, the gener-
alization errore, decays to zero in Fig.(#l). The student
Xnith fixed biases is trapped for most of its training time in
the symmetric phase before it converges eventually.
Before analyzing the differences between the original
soft-committee and the extended model further, we would

The differential equations can only be solved accuratel
in moderate times for smaller student networks(5) but
any teacher sizé/ due to the required numerical integra-
tions. For small learning rates, wherg, terms can be ne-

glected, the differential equations can be solved for Eny |ike to briefly assess the influence of finite input dimensibn
For the remainder of the paper, we would like to focus on the,, the dynamics, especially in order to confirm that the dy-
influence of different bias scenarios and the influence of the 5 mic variables are self-averaging. In Fig. 1 we therefore
learning rates. We therefore restrict ourselves otherwisgsg compare the theoretical evolution of the overlaps, the
mainly to small realizable networksKEM with K=2,3)  piases, and the generalization error with the simulation re-
and uncorrelated isotropic teacher weight vectors of arbitrary ,is for input dimensionsi =10, . . .,500, for the above stu-

length (Tym=T6nm). dent and teacher scenario with adjustable biases. The initial-
The dynamical evolution of the overla@; , Rin andthe  jzation for the simulations is identical to the theory

E’;;"?esai _folltl.0\|/vs frgfp integretlting. thﬁ Equtizonz or%mqtion for the student norms and biases, but the overlaps were
rom initial conditions determined by th@andon) ini- . L . LA
tialization of the student weightd/; and biase®, . For ran- iCSI[eEN‘El?,grEET%[?Iy with input - dimensionRi=Qx.
Soorn\]/vlilrlmtl)aehzg?f? mﬁilrsstﬁglr;%:r?;gg{-Otf)é?v?/esetﬁdo(lai:‘}‘te\r/;?t Sinpe the Iear_njng trajectory for finithl is stochast_ic,
student vectors ,and student-teacher I\J/ed’Ryp;swill be only therg > a probab|l|ty for a _student nqde permutation in t_he
O(1WN). A ,d nitializati f th ioh d bi speC|_aI|zat|on process I_eadlng to multimodal probability dis-
( ). Aran om initia |zat|(.3n'<') t € weig tS and DIases i jtions of the dynamic variables. To be able to calculate
can therefore be simulated by initializing the nor@g, the  \eaningful mean trajectories and variances, student nodes
biases#;, and the normalized overlap®;;=Q;;/VQ;iQj;  were therefore relabeleal posteriori However, this permu-
and R;,=R;,/\Q; T, from uniform distributions in the tation probability decreases in the simulations withN%/
[0,1], [—-1,1], and [ —10 *210 ?intervals, respectively. leading to a well defined deterministic behavior in the ther-
We find that the results of the numerical integration are senmodynamic limit, i.e., the probability distributions of the dy-
sitive to these random initial values, which has not been th@amic variables become asymptotically unimodal. The re-
case to this extent for fixed biases. To study the effect ofulting mean trajectories of the dynamic variables are shown
different weight initialization, we have fixed the initial val- for two input dimensions N=10,100) in Figs. (@-1(c),
ues of the student-student overla@s and biasesy; for ~ where some of the order parametef@,f, R,,, and R,y
some of the numerical examples, as these can be manipwere omitted as they have very similar values to others
lated freely in any learning scenario. The initial student-(Qq;, R11, andR;,) due to the symmetry in the learned task.
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FIG. 1. The dynamical evolution dB) the student-student overlag; and (b) the student-teacher overlaBs, as a function of the
normalized example numberis compared for two student-teacher scenarios. One student neiesriited by *) has fixed zero biases and
is trained using examples generated by a biasless teacher network. Other student networks have adjustable biases and are learning to imitat
a teacher task with nonzero biases. The influence of the symmetry in the initialization of the biases on the dynamics is ghptine for
student biases; and(d) the generalization errary. The initial value off; =0 is kept for all runs, bu#, varies and is given in brackets in
the legends. Finite-size simulations for input dimensiNnrs10, . . . ,500show that the dynamical variables are self-averaging. For all order
parameters and the biases the mean trajectoriesl 610 andN =100 are shown for the relevant order parametse® the legends, for

biases:f; [N=10 (O), N=100 (¢)]; #, [N=10 (A), N=100 [O)]}. For the generalization error we show the resultsNer 200 and
N=500 for comparison.

The size of the symbols is only a guide to the eye, but idixed biases in backpropagation training even for an opti-
generally much larger than the standard deviation in thenized learning rat¢18,19, as the training time grows lin-
mean. Even for the smallest input dimensionNof 10, the  early with more tharkK? in the symmetric phase and only
agreement of the simulations with the theoretical predictionsyith K in the convergence phase. For small learning rates the
is qualitatively good but the trajectories exhibit a systematigrapping time is furthermore linearly extended witl. The

shift to smallera values. FoN=100 the finite size effects influence of the initial conditions is only logarithmic through
on the mean trajectory are already very small. For compariye gifferences in the initial student-teacher overlaps

son, the simulated values of the generalization error in Figeo5 \which tvpically of O(1/VN d t be influ-
1(d) for larger input dimensionsN=200,500) are already [20], which are typically of O(L/YN) and cannot be influ

) AT ; L enced in real scenarios withoatpriori knowledge. The ini-
virtually |nd|st|ngg|shable from thg theoretlcal predictions. tialization of the biases, however, can be controlled by the
In general, one finds that the deviations of the mean fromuser and its influence on the learning dynamics is shown in
their thermodynamic predictions and the variances of the dy-_ . 9 dy o
namical fluctuations scale withN/as expected4]. Figs. j@ and 1d) f.of Fhe b!aseg and Fhe generalization error,
One of the most striking differences between the soft/€SPectively. For initially identical biase®){=6,=0), the
committee machine with and without biases is the length of Volution of the order parameters and hence the generaliza-
the symmetric phase for nondegenerate teacher biases. THI" error is almost indistinguishable from the fixed biases
the training speed can be closely linked to existent or broke§a@se. A breaking of this symmetry leads to a decrease of the
symmetries in either the underlying teacher rule and/or th&ymmetric phase linear in I — 6,]) until it has all but dis-
input distribution has already been observed in much simpleappeared. The dynamics are again slowed down for very
systems such as perceptrons and a variety of learning sclérge initialization of the biasefsee Fig. 1d)], where the
narios: supervised and unsupervised learning or batch arfglases have to be modified significantly before reaching their
on-line learning(see, e.g.[14-17). In the soft-committee optimal values.
machine the length of the symmetric phase has also been The influence of bias dynamics in the case of degenerate
shown to be reduced significantly for graded teach2}s teacher biases is demonstrated in Fig. 2; here we show the
However, for isotropic teacher scenarios, the symmetri@volution of the overlaps, the biases, and the generalization
phase dominates the overall training time of the model witherror from random initial conditions fd =3 and a common
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FIG. 2. The dynamical evolution of the student-student over@pga), the student-teacher overlaRg, (b), the student biase (c),
and the generalization erreg, (d) as a function of the normalized example numbeis shown for a realizable scenario=M=3 and
o= 1= Mw=2. The teacher task&\, large degree of symmetryT(,,= d,m and ¢,=1) is responsible for the very slow specialization
process that takes place in two identifiable stages. Training time is shortened considerably when the teacher vector isotropy or bias
degeneracy is broken.

learning rate §o= ny= n,=2) for a realizable task\ =3) 2(d). The task?"'d has by far the slowest training behavior,
with isotropic weight vectorsT,,= dny,) and degenerate but with the sequential specialization process already described
nonzero biasesd,=1). As before the student-student over- ahove for the order parameters. This is followed by the ap-
laps[Fig. 2@)] are quickly drawn into a symmetric subspace, proximation to the tasd, which also features a sequential

characterized by similar overlafRi, [Fig. 2b)] between  eaking of the symmetry but on a much shorter time scale.
each student node and all teacher nodes. The student blaspﬁe fastest training times are exhibited for ta%and?*
[Fig. 2c)] take values that are symmetrically grouped arounquth no measurable speed up for the graded task, sugaesting

the true degenerate teacher biases. The breaking of the sym- . .
metry occurs in two stages. First, the third hidden unit,that nondegenerate biases affect the breaking of node sym-

whose single student bias is located closest to the true biélie”y more S|gn|f;)cantll(y tha?f gradfe(slhwek:)lght veptors. TEF
value, begins to specialize on the third teacher unit. Thtrong symmetry breaking effect of the biases Is arguably

other two student units decorrelate from the third and itdU€ O @ stéep minimum in the generalization error surface
associated teacher unit, but remain strongly correlated wit@!ONg the direction of the biases caused by the shift of the
each other and the two other teacher units. The two biasdg€ans of the individual hidden unit output distributions. This
keep their symmetry around the true teacher bias valugicture can be confirmed by the fact that the trajectories of
These symmetries are eventually also broken and the studeifte biases do not cross, i.e., the rank ordering according to
finally converges to the optimal solution. Although the evo-the value of the bias is preserved at all times, whereas the
lution is therefore still characterized by three learning stagesprdering according to the norms is not. We have found this
transient to the symmetric phase, breaking of the symmetnyjto be true for a range of other learning scenarios studied,
and final convergence, similar to the evolution of the modeincluding larger networks and more strongly graded teachers,
with fixed biases, the extra degrees of freedom introduced bgrovided that the biases were not initialized highly sym-
the biases enrich the dynamical evolution considerably.  metrically. This seems to promote initialization schemes
To contrast the training behavior in this very symmetricwhere the biases of the student hidden units are spread
task 7j; with the three other generic tasks that exhibit lessevenly across the input domain as has been suggested previ-
symmetry, we introduce small deviations from the originalously on a heuristic bas[21].
symmetry by choosingT,,,=(1+0.1n)6,, instead of For the cases of degenerate teacher biases, the grouping of
Tam= Jnm for teacher overlaps and/gr,=0.8+0.1n instead  student biases found above is typical for all cases studied.
of p,=1 for the biases. These deviations have a dramati€or an even number of degenerate teacher biases, the student
effect on the evolution of the generalization error in Fig. units combine in pairs. Each pair is characterized by its two
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06T———————————3 the initial conditions and the learning rate on the learning
] g 32 - - process more systematically in the following section.

IV. ATTRACTIVE FIXED POINTS

Although attractive symmetric fixed points have been
found also for the soft-committee machine model with fixed
biases[20], these needed careful preparation of the initial

04 ... o R T conditions and were restricted to overrealizable cases. In the
] 02572 Tom P2 =< . . . . .
1@ g, -2 6, ~o case of adaptive biases, one finds a multitude of attractive

V67—V T 7T suboptimal fixed points for realizable cases with, in some
0 400 800 1200 1600 cases, large basins of attraction. They exist not only in cases

a where both teacher weight vectors are isotropic and the bi-

_ _ _ ases degenerate but also for graded teachers and nondegen-

FIG. 3. The dynamical evolution of the biasésfor a student  erate biases, although in these cases, the basins of attraction
imitating an isotropic teacher with zero biases reveals symmetrigand to shrink with increasing task asymmetry. In real world
dynamics forf, and 6,. The student was randomly initialized iden- problems, the problem of poor local minima and the influ-
tically for the different runs, but for a change in the range of theence of {he initial conditions on these is well known for
random initialization of the biasesJ( —b,b]), with the value ob backpropagation training. One can find numerous examples
given in the legend. Above a critical value lofthe student remains in the literature(e.g., [22,23) that produce training error
trapped in a suboptimal phase. dynamics that look very similar to the evolution of the gen-

biases having the same distance to the true teacher bias valfalization error found in this work.
with opposite sign and by its weight vectors being highly ~Subsequently, many algorithnisee, e.g.[24] and refer-
correlated. For an odd degeneracy, as above, the behavior§gces thereinhave been proposed that aim at finding good
similar but for a single remaining student bias, which is stainitial_conditions. However, we are aware only of two
bilized around the true teacher bias value. The breaking d21,23, which do not rely on information extracted from an
the symmetries in these cases can take a lot longer than f@ Priori known training set and are therefore the only ones
fixed biases and can be extremely complicated. It is oftef@Pplicable in the framework studied. Below, we will there-
broken in stages as in the example given above, but can ald8re try to gain a qualitative understanding of how the initial
occur simultaneously. We also find a strong influence of théonditions and the learning rates can be chosen to avoid be-
training outcome on the initial conditions and the learningcomMing attracted to suboptimal network solutions. Our find-
rate chosen, in some cases not all symmetries are broken alt@s are then compared to the heuristically based suggestions
the student remains trapped in a suboptimal configuratiorn [21,22. o _ _
i.e., some of the symmetric fixed points are attractive. Due to the quadratic increase in the number of dynamic
To illustrate this point, the dynamics of the student biaseg/@riables with the system si€, we restrict ourselves to the
6, are shown in Fig. 3 foK=M=2, 5,=1 and random smallest network siz& =2, although we have verified the

initial conditions, and an isotropic teacher with degenerate/alidity of the drawn conclusions for larger networks. In par-
biases p,=0). The student was initialized identically for tlcular,. three elgments .that |anl_J§ance the size of Fhe basin of
the different runii‘e_' the same seed was used for the ran_attracnon for given initial conditions were |nVeSt|gated: the
dom number generatgrbut for a change in the range of the task asymmetryin terms of the teacher lengths and biases
random initialization of the biasesJ( —b,b]). We find that  the initial conditions, and the learning rates. _
the student progress is inversely related to the magnitude of Since the initialization space and hence the basins of at-
the bias initialization until a critical value df is reached, traction are still of high dimensionality, we have restricted
where the student fails to converge at all. It remains in gurselves to one-dimensional slices in one of the biaggs,
suboptimal phase characterized by biases of the same |ar@@rametr|zed by a further variable. The remaining variables
magnitude but opposite sign and highly positively correlatec®f the student were chosen to bg=7,=2.0, Q;;=0.1,
weight vectors that have identical overlap with all respectiveQ,,=0.2, 6;=0.0, andR;,=Q,=U[ — 107210 *?] (with
teacher vectors. This behavior may be explained by the faat fixed random segdThe teacher task was usually chosen to
that the generalization error decreases with increasing made of the form7}, with T,,,,= ,m and ¢,=0, if not other-
nitude of the symmetric bias arrangement in the symmetrigvise stated. The convergence timg was defined as the
phase, suggesting the possibility of a local minimum in theexample number at which the generalization error has de-
generalization error surface. This may cause the dynamicayed to a small value, here judiciously chosen to be®10
competition between the specialization process of the studeméquiring the student to have broken the symmetries in
hidden units and the increase in magnitude of the biaseweight space successfully. The convergence time diverges in
observed in Fig. 3, where the basin of attraction is deterithe case that the student is attracted to a suboptimal fixed
mined by the initial conditions and the learning rates. Fasteggoint.
convergence for this scenario is achieved o0 and a
reasonable bias initialization strategy seems therefore almost
opposite to the above case of nondegenerate teacher biases.

In order to devise an initialization strategy that can cope In Figs. 4—6 we compare the influence of the initialization
well with all learning scenarios, we explore the influence ofof 8, on the convergence time. and the resulting basin of

A. Task asymmetry
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FIG. 4. The convergence time.(0,) (see the tejtis shown for FIG. 5. The convergence time,(6,) is shown in terms of the

several values of the common teacher bias for the degeneragasymmetry in the teacher bias@§ (¢,=+ ). These tasks also
teacher bias tasiy (€,=@). a diverges for large enough initial  exhibit an attractive suboptimal fixed point for small but with a
magnitude off, for all values ofe (see the legendFor increasing  smaller basin of attraction. Above a critical value the suboptimal
¢ the basin of attraction to the optimal solution becomes asymmetiyaq point becomes unstable although it still can influence the
ric and larger. learning process considerably. For very large initial valaggand
large enouglp), the learning process is slowed down exponention-

attraction for three different teacher tasks of the fd’jgn T'n :ill)é’nzf;};e student is still able to converge to the optimal solution

and 79, where some sort of asymmetry was applied gradu-
ally to the original teacher taski{,= é,,, and ¢,,=0).

In the case of degenerate teacher biaEba(Fig. 4) for
which the biases were chosen to @g= ¢, the convergence
time diverges beyond some critical absolute val@gsof 6,

and the basin of attraction to the optimal solution is restricted o , o
t0 —605,< 62<6;—rit' For smallg this basin is symmetric for small initial values# , and 6,, as already shown in Fig.

(0git= 0;“) and almost constant in size, whereas for Iargel(d)' quation(lO) holds exactly in the '"T"‘Bﬁo only for
=0, in which case the convergence time diverges as only

i 1 1 1 1 in
¢, the basin is skewed and increases in size. The faSteﬁwe biases can break the symmetry. Otherwise, the conver-

convergence is always achieved ;= 6,=0, i.e., when ence time is affected by the specialization process triggered

the teacher task degeneracy is reflected in the bias initializz-g-y the asymmetric initial conditions iR, . This is also true

tion. This effect becomes increasingly more pronounced fofor the other lawgEgs. (1) and (12)] found below.
larger teacher bias valueg, which also generally show — gimijarly, the shortest possible convergence time de-

shorter convergence times. This effect may be explained byeases initially with increasing task asymmetry according to
the fact that for smalb most examples are drawn from the

region where the sigmoidal transfer function is linear, mak-
ing the symmetry breaking process more difficult. opty 7 op [0}

This behavior is to be contrasted to the case of nondegen- af(e")—a(e)=In ? , (1D
erate teacher bias tale$ characterized by ,= * ¢ shown
in Fig. 5. Here, one finds that the basin of attraction to the
optimal solution already increases substantially for very
small values ofp, although we still find that the student is
drawn into a suboptimal solution for large enough initial
However, above a certain value in the teacher bias asymme-
try 04i=0.174, the suboptimal solution ceases to be an at-
tractive fixed point, although the dynamics can still be
slowed down considerably due to the influence of the sym-
metric fixed point. Abovep,; and very large initial values

, ( |92|)
ac(83) = ac(fy)*In| — (10
163

#,, one finds that the convergence time increases exponen- I e ——— :_A_,_A_/_‘/x"
tionally with 6,, arguably due to the fact that the student - F——T
hidden unit is initially highly saturated and the gradient de- 0.0 0.2 0.4 0.6 0.8
creases exponentionally. 6,

We further find that the basin of attraction is always per-
feCtIy symmetric, unlike in the degenerate case since the hid- FIG. 6. The convergence time. is shown as a function of
den unit symmetry is broken by the biases and not thejifference in the teacher lengtidd = T,,— T1;(see the legend a,
weights. This also explains the sharp peak in the convetis also reduced as for the asymmetric bias od&g. 5), but the
gence time for initial values aroung,=0 with basin of attraction does not grow as significantly for the taBks



57 ROLE OF BIASES IN ON-LINE LEARNING OF TWO- ... 3273

850 : - :
Ja 0, = —0.3 ------ : E i I E :
] El 0,=0 _ E ; ' I i :
800 i =03 —— | I } 5 ;
1 u . y :
1 ) | 'I 5 :
1 p N | ,
e " I T T R
| | R Y B :
] | " ‘ ’
] I . | ,/ ; i
’:" /'I / /,’ N

= 'é;':.‘-:,;'éiyst,/__«:_ -

650 1 4| | L AL L
-0.4 -0.2 0.0 0.2 0.4
6, — 61 0,

FIG. 7. The basin of attraction for initial,, shown for several FIG. 8. The basin of attraction for initisd, shown for several

values ofé;, depends almost solely on the differenge- 6. magnification factorsv of the initial student-student overla;
(see the legendncreases with the size of these initial values.

and the minimum becomes sharper in term%gfor large
©. This minimum defines the optimal initial valuglP(g),  of the training. In particular, we find that the results become
which increases as expected with increagindput is always ~ invariant under the transformatiaty, = 6,—0.9745(9)< 6,,
considerably larger thag. This effect is especially remark- i.€., the basin of attraction depends almost solely on the dif-
able when taking the initial student norm into account, comferenced,— 6,. This is somewhat surprising since one may
paring the actual effective bias or alternatively the abscisshave assumed that the basin of attraction should depend on

of the hidden units(i.e., o/\1+T and 6,/\J1+Q,, or theindividual abscissas or the effective biases of the student.
o/\T and 6,//Q5). In Fig. 8 the basin of attraction for different initial student

The graded teacher tagH also speeds up the breaking of lengths is shown. All the initial student-student overlaps
hidden unit symmetry as shown in Fig. 6 and reduces th¥&/€re r_nagnified from their_original valué¢g5] by factorsM _
optimal convergence time gpt substantially. The difference gllvenl in th? Ilzgend. Thhe u;;‘lugncef of the _stud_ent lengths is
in convergence time due to a small task asymmetry is givefy'carly twofold. First, the basin of attraction if5, grows

g Y y'sg approximately with 0.068(5}) 0.331(6)x M %4458 making

in terms of the teacher length differené&=T,,— T, by - g T
the training process less sensitive to the initial bias values.
ST However, this growth translates into a decrease of the critical
aP(5T)— a2 5T)o<|n(—). (12)  abscissa sinc® grows with M, which could be interpreted
oT' as another sign that the raw initial values are the crucial

L . . parameters and not the abscissas. Second, the optimal con-
The total reduction inx for agien asymmetry IS smaller vergence time is slowed down slightly for increasiMgand
yvhen compared td"n. This confirms the observation madc—_z one finds approximately %= 643(1)+ 12(1)x M%),
in Sec. lll that the .b|ases h'f’“’.e a stronger symmetry bregkmg Similarly, in Fig. 9, we assess the influence of finite size
effect than the weights. This is also mirrored in the basin c)feffects on the basin of attraction through the typical initial

attraction increase, which is not as substantial as in the case . A . .
normalized student-teacher overlaps O(1/y/N) (ignoring

of asymmetric biases, and the critical biég;; follows ap- T . .
proximately g 5T) — for(0) o STOLLR) other stochastic finite size effeft#\s predicted in 20|, the
We have found qualitatively similar results for larger net-

works, where the basin of attraction to the optimal solution ] R ’
i 800 b !

also grows with the teacher task asymmetry. However, one ] i . :
also finds that the range of initial conditions attracted to the 700 ! : Lo :
optimal solution shrinks with network size for a given ] A | i :
teacher task asymmet(g.g., 0,— 0,—1="0.1) and the num- a e S | ;
ber of suboptimal attractive fixed points grows significantly. “ 500 —m Y
We have found this to be true especially where the asymme- I e / :
try is purely in the weight vectors. 4004 . :
B. The Inltlal Condltlons 300_‘“\ -\—\-I- I-_I —l_‘-l- I--I -l—l_l- I--I -I— I-I- ;'I _l_ l‘—l T 17T

Since the largest basin of attraction to the suboptimal 0.0 01 02 03 04 05 06 07

fixed point is found for learning scenarios with degenerate 6,
teacher biases, we will investigate the influence of the other
initial conditions and the learning rates for the task FIG. 9. Although the basin of attraction for initigh grows with

Thm=6nmandp,=0. the range of initial student-teacher overlapsfor values see the

In Fig. 7 it is shown that the influence of the initialization legend the dynamics still get trapped in a suboptimal configuration
of the first biasé, consists almost exclusively of a linear for large enoughy,. Sincer ~1/y/N, this gives some indication of
shift in the range of initiah, values that lead to convergence how finite size systems may behave.
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FIG. 11. The normalized convergence time as a functiof,o$
shown for various weight learning rates, (see the legendvith the
bias learning rate fixed a,=2. For very small weight learning
rate the basin of attraction increases quiditty 7,,=0.1 the train-
ing diverges forf;=5.415).

FIG. 10. The normalized convergence timg= 7a, is shown
as a function of the initialization off, for various learning rateg,
(see the Iegend;»7§=0 represents the dynamics neglectivygg
terms.

optimal convergence time is reduced linearly in rjn(
[a=187.70(7)- 16.923(4)><In(?)]. More relevant for the Separate the weight and bi’a\:s learning rates. In Fig. 11 the
purpose of this work is the increase in the basin of attractiomormalized convergence time,(6,) is plotted for fixed bias
to the optimal solution with the critical initial bias learning rate ¢,=2) but allowing for variations in the
Bcrir=0.370(1 1+ 0.507(5)x r0-103(1) weight learning ratep,,. One can readily see that the basin
The results found foK =2 again carry over qualitatively ©Of attraction increases whe_n the weight and bias .Iearnlr.]g
to larger networks with the decrease in the basin of attractioh@€s are well separated. This advantage, however, is relative
with network size as already mentioned in Sec. IV A. Espe-2S & very small weight learing rate increases the conver-
cially interesting in this respect is that, even =2, the 9ence time linearly. . _
maximal initial abscissas that guarantee convergence for the Similarly in Fig. 12, the convergence time(6,) is
case of degenerate teacher biases are generally smaller th#Pwn for fixed weight learning rater(,=2) but variable
the size of the input domain, a tendency that becomes mor@ias learning ratey, . Again, the basin of attraction is clearly
emphasized for larger networks. These results therefore cohlarged when separating the time scale for the training of
tradict heuristics presented [21], where it has been sug- biases and weights. Whereas training is slowed down for
gested to spread the abscissas across the input domain. 3fall bias learning rates, this is not the case for large
[21], it also has been assumed implicitly that the abscissawhere the basin of attraction increases to very large values. It
are the relevant quantities, whereas our work indicates tha$ therefore more reasonable to achieve the desirable separa-

the raw bias values are more important in determining thdion of the learning rates by choosing a large bias learning
basin of attraction. rate. In fact, a maximal bias learning rate does not exist in

this scenario, suggesting a possible different scaling. It fur-

C. The learning rates ther poses the question of whether in this case the basin of

Beside the initial conditions and the teacher task to be

learned, the learning rates used also strongly influence the A il 7e=60 ——-
. . 4 4000 A

learning process. In Fig. 10 the convergence time as a func- . Il 7e=30 -
tion of 6, is shown for a range of common learning raigs ] iy "9=_lg T
For convenience, the convergence time has been normalized bt 22;3___
with 1/7,. One finds that the convergence time diverges for 2000 Iy I no=2 ——-
all learning rates, above a critical initial value 6. For @, I I ng=1-----
increasing learning rates, this transition first becomes sharper ',‘ 16 =0.5 -
and occurs at smallet, until the learning rate is reached that 1000—E e i | 6=0.1 —
provides the fastest convergence to the optimal solution for 17 1 !

. . . . . 700 _oo-on < e
small 8,, beyond which the basin of attraction widens again. T T
~ The increase of the basin of attraction has been postulated 00 02 04 06 08 10 12
in [22], however, the functional relationship given 0,

(70<Qji + 0?) cannot be supported by our findings. It is not

only quantitatively incorrect, it also fails to predict a finite  F|G. 12. The convergence time,(6,) is plotted for various

boundary for an infinitesimal small learning rate. This work pjas learning rates, (see the legendwith the weight learning rate

further does not account for interaction between the hiddefixed ats,,=2. For very large bias learning rate the basin of attrac-

units and the different roles of weights and biases in detertion extends to very large values, e.g., &g;=5.735 for 5,=60,

mining the basin of attractiofsee Sec. IV B although the training is still eventually slowed down exponention-
In Figs. 11 and 12 it is shown that it can be beneficial toally for very large initial values of,.
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attraction encompasses the whole space of initial conditiongo be justified for the student-student overldppart from a
Unfortunately, a closer inspection using larger networksrelabeling of the student nodesstudent-teacher overlaps,

and other learning tasks reveals several limitations of largand the student biases in the convergence phase.

bias learning rates and adiabatic elimination. First of all, the The reduction of the number of order parameters from

use of adiabatic elimination for very small leads to ex- O(Kz) to just five allows us to ana|yze the |earning dynam-

tremely large initial equilibrium values of opposing signs for jcs in the convergence phase as a function of the network

the biases, effectively canceling the outputs of pairs of hid'sizeK, the length of the teacher hidden unftsthe size of

den units. This effect can be attributed to the initial lack ofia teacher biases, and the user adjustable learning rates
information about the teacher, reflected by the inherentlyﬂ0 and 7, ’

small values of the student-teacher overl&ysfavoring the
hidden units to be switched off effectively. Consequently,
the progress of the student weights is inhibited to such an
extent that training does not converge in finite time for all
practical purposef26]. Similarly, very large but finite bias In order to predict the optimal learning rates for the con-
learning rates also slow down the training time due to the/eérgence phase, we linearize the equations of ma#ah in
biases blowing up in the very early stages of learning. It isiR,Q,C,S,6} around the zero generalization error fixed
therefore necessary to restrict the bias learning rate for verfoint R* =Q* =T, S*=C* =0, and§* = ¢ (see Appendix
small @, i.e., for the initial transient, to a finite value. It is B). The matrixM of the resulting system of five coupled
unclear whether this is also a problem for finite size system$near differential equations im=T—R, q=T—-Q, s=S5,
where adiabatic elimination corresponds to a bias learning=C, and 9= — # has two sets of eigenvalues.
rate of O(1) instead of O(1/N). Two eigenvalues X; ;) are the solutions to a quadratic
Even when adiabatic elimination or a very large biasequation(B3) consisting of the same matrix elements\of
learning rate is only triggered once training has reached thas in the fixed bias case and are therefore independent of the
stable symmetric plateau, their usefulness in terms of basihias learning ratey,. These eigenvalues are nonlinear in the
of attraction enlargement is, in general, not pronounced folearning ratez,, and\, becomes positive for large enough
larger networks. In fact, using large bias learning rates cam,,. The other three eigenvaluesy, 5) are the solution to a
actually decrease the basin of attraction to the optimal netsubic equation(B4). These eigenvalues depend on both
work parameters especially in degenerate bias tasks with isdearning rates and are negative for all valuesygfand 7.
tropic weight vectors, e.g., training with a bias learning rateThese eigenvalues are minimized with respecyjoin the
abover,=3 in the learning scenario of Fig. 2 converges tolimit »,—, i.e., the optimal bias learning rate in the con-
a suboptimal fixed point. vergence phase is at infinifyor a more detailed discussion
However, once all hidden unit symmetries have been brosee Appendix B Below, we will therefore restrict ourselves
ken, adiabatic elimination or a very large bias learning ratdgo the study of two learning rate parametrizations: a common
can be employed in all circumstances and generally results ilearning rateny= 7,,= 7, or the weight learning rateyp,,
slightly faster training when compared to using a finite learn-with the bias learning ratey, eliminated by taking the limit
ing rate. This will be investigated analytically in more detail 7,— . We will adopt the convention to use a generic learn-

A. The eigenvalue spectrum

in the following section. ing rate » and eigenvaluek whenever a statement is appli-
cable for both parametrizations, whereas parametrization de-
V. ANALYSIS OF THE CONVERGENCE PHASE pendent symbols denoted by superscripts or subscripts are

used otherwise.

For the soft-committee machine model with fixed zero The pehavior of the eigenvalues described above is
biases, realizable learning scenarié<(M), and isotropic  graphically illustrated for both learning rate parametrizations
teachers (,m=Tdnm), the order parameter space could bej, Fig. 13a) for K=5, T=1, ando=1. Within these pa-
very well characterized throughout the learning process bysmetrizations, the eigenvalues; 45, are linear in 7,
similar diagonal and off-diagonal elements of the °Ve”aR/vhereas>\12 have higher orders iri;f ., are identical for
matricesQ andR, simplifying the linear analysis around the ot pararﬁetrizations since they are i‘unctionsm,fonly,
symmetric and zero generalization error fixed poift8]  \hereas the slopes af; 4 are clearly minimized for the pa-
fggjé(je%r?gI%/OETm the number of dynamic variables could b?ametrizationr;,,—wo (n ‘gv_is_omi_tted sincexs— — for 7,

. S - . . —). One can further distinguish between two slow modes

For the model with dynamic biases this d'mens'onal't.yassociated with eigenvaluasg and\; and three fast modes

reduction for the equivalent teacher task with ISOtropic_ << ciated with eigenvaluas and), 5, which are negative

weights and degenerate biases is in general not a good Ar all learning rates and whose magnitude is significantly

proximation as can be clearly seen in Fig. 2. However, if thqarger in the region of interesting. The fast modes decay

Ztr?sdaet;t biases are initialized quite symmetrically, we find thequickly and their influence on the long-time dynamics is neg-

ligible. The dependence of the two relevant eigenvablugs
and X3 on 7 is more closely illustrated in Fig. 18) in the
same learning scenario. As mentioned, the eigenvelues
negative and linear iy, whereas the eigenvalue; is a
Rin=R&in+S(1~6in), (13D nonlinear function ofy and negative for smaly. For large
7, A1 becomes positive and training does not converge to the
0,=06 (139 optimal solution defining the maximum learning rajg,, as

Qij=Qd;; +C(1—- ), (133
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FIG. 13.(a) The eigenvalues ? andX\ " are shown as a function of the applicable learning vafer K=5, T=1, andp =1 for the cases
n¢= Mw= Mo and n,— =, respectively(b) The two relevant eigenvaluésee the tejt\; and\; are magnified for the same scenario. For
comparison we plot ®; and find that the optimal learning ra#€ is given by the minimum ok, for 5,— % but by the root of\;— 2\
for 7= 9y

M 1(7ma) =0. For all < .« the generalization error decays analytically unfeasible for genertl, T, ande. However, for

exponentionally tce 5 =0. some special cases further analytical progress can be made:
K—oo, T—o, andT—0. For theT limits, it is necessary to
B. The optimal dynamics adopt a scaling for the teacher bi@gsand we have used both

_ ] ) ] natural scaling ansze[see Eq(9) in Sec. Il]. These analytic
In order to identify the optimal convergence eigenvaluejimits are studied in detail in Secs. 1-5 in Appendix B and
AP, which is the eigenvalue associated with the slowest dethe main results will be referred to in the discussion of the
cay mode, we expand the generalization error to second ogppropriate figures and are summarized in Table 1.
derinr, q, s, ¢, and®9 (B8). Numerically, we find that the
eigenvector associated with the linear eigenvalyeis or- 1. The critical teacher length
thogonal to the first-order terms in the generalization error

and can therefore not contribute to their decay, but controls. We find that.'r? the smalk limit, the OP“”.““”‘ Is always
only the decay of a second-order term with2 given by the minimum oh ; and both learning rate param-

The leaming rate ., which provides the fastest rectgfastcl)cljl:]t?oirz I(ieZn)flc)ala’l WIri]g;earltsasflj)l'iir':heinlaaﬂ@I figg'r tdheeca
asymptotic decay rata°" of the generalization error, is 1= <h3) applies, C,itg X y
; L for n,—oc. For finite T there exists & “"(K, @), which de-
therefore given by the condition . . A .
pends on the kind of learning rate parametrization and di-

AOP'=|min[max A 1,2\3)]|. (14)  Vides these two solution regimes. The functional dependence
7 of T{™ and TS" is graphically illustrated in Fig. 14 as a
function of ¢ for a range ofK values including the&k — o
This means either\;(7)=2\3(7%) or min,(\y) if limit, w'here it is im{)licitly assumed that ('a@5<K..
Ny (7°P)>2N5(7 %P, where 7 is the learning rate at the !N Fig. 14@ T¢" decreases monotonically with. The

minimum of x,. In Fig. 13b) one finds that for this particu- K—2 limit exhibits a finite limit (T5"~0.21) for o —c,
lar case the fastest decay is achieved at the minimunyof but acquires a power-law decdyy"«o 2 for all finite K
for 7,—% but at the root o\ ;— 2\ 3 for 7,= 7, [see inset of Fig. 14)]. For T>T §"(K,0)~1.278, the root
Unfortunately, the calculation 0f°™ (and 74 or 7,) via  solution applies for allp due to monotonously decreasing
Eq. (14) and the determination of the kind of optimum is T§", whereas for all othefT values the solution type

TABLE |. For T—0 and T— the optimized dynamics in the convergence phase show power-law
behavior to leading orddfor more detail including higher-order terms consult Appendixd both learning
rate parametrizations,= »,, and n,— . The table shows the power laws and theo/\1+T dependence
of the optimal learning parametergl™ and » ', their respective optimal convergence eigenvalgg' and
A ', and the normalized difference between maximal and optimal learning\rgf,= ( 7max— 7°°)/ 7°P"
Note that for theT—0 limit both learning rate parametrizations are identical. In this limit, an alternative
scaling for the biasesg= ¢//T) has been investigated as well.

T—0 T—o (K finite) T—o [TK 1= 0(1)]
7= 1w (@) 7= 1w () 6= T 75— 6= N Ng—
7 rel? 2K 2K TL200%2 TU2g0%12

o
ApR T1+202 JorT [T(1+0?)]* T [Ta+eyrt T
)\ 0Pt T2K’1(1+2é2) TK—léz T—3/2(1+é2)—1e—gz/2 T—s/zegzlz [TK(1+é2)]’1 (TK)’l

opt
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FIG. 14. The critical teacher Iengtl’l’lsgrit (@ for 7= nw andT\fvrit (b) for ny—o0 as a function ofo for severalK values given in the
legend ¢ represents thig — limit). Tt defines the transition between the optimal convergence given by the minimhmaoid by the
root of A, — 2\ 5. Notice that for giveri, the solution type can change for increasfingt most once fow,= 7,,, whereas it can change up
to three times forp,— 0. The inset in(a) shows the power-law decay begmocé’Z.

changes from the minimum to the root aboveTa and son to n,— [Figs. 18d)-15(f)] as a function ofK for
K-dependent value op. The dependence of§" on K is  T=1 and a range of values. In Fig. 16) one can see that
relatively weak and varies witle. For smalle (¢<0.45), the optimal learning rate; 3™ is hardly K dependent for
T§" increases with K, whereas for medium ¢  smallo (beside the inherent rescaling withKLimplied by
(0.45s0=<1.64), T§" decreases wittK. Above ¢=1.64, the normalization of the soft-committee machinbut in-
TS increases again with and reaches the qualitatively creases proportionally ti for large ¢ before it eventually
different solution for finite and infinit&. levels off at ap dependent value. Th€—o analysis sug-
On the other handl ;" does not behave monotonically in gests a scaling of the optimal learning rate withygPx o2
¢ (with the exception oK=2) as shown in Fig. 1®). It  since the maximal learning rate scales in this fashion. This is
also decreases initially lik& §™ up to 0~1.3, but then in-  mirrored in the behavior of the optimal convergence rate in
creases up to a maximum whose height and position inFig. 15b) (for graphical purposes multiplied bi) which
creases irK, before it falls towards the asymptotic value of exhibits the expected K/behavior for small. For largeg,
T o'(K,0) = 1/2 for all finiteK . We again find a qualitatively however, the increase %K for smallK causes\ I to

different behavior folk —o0 asT " grows unabatedly with pe constant untily ¢ levels off, whenx & reverts back to

¢. Depending on the value ¢ andT, the type of solution the 1K decay. We further note that the absolute value of the
can therefore change up to three times for increa®ing convergence rata S™ initially increases for smalp for all
Similar toT§™", we also find thall " grows withK initially  values ofK, which is aT-dependent effect we will study in
(0=0.52), then decreases (052=1.97), and then in- more detail below. In Fig. 16) we further show the normal-
creases again. ized difference between the maximal and optimal learning
It is also clear from the graphs and from the fact thatrate defined as
N §=<\3 thatT$" must be greater thafi§™ for all K and
besidesp =0 whereT J"'=T ™. We can therefore divide the
optimal convergence behavior for &, T, andg into three
regimes: '
(1) T<T{K,0)<T(K,0): The minimum of\, de- _ oot e _
fines the optimum and both learning rate parametrization¥Ve find thatA 705, initially increases withe for all K,

opt
A opt __ Mmax_ 7 P

max ont
7 p

behave identically X opt_ \ gpt and %= ngpt). which is ggain a featqre dependent bnbefore it decreases
©) Tg”t(K 0)<T<TC(K,0): The optimal solution is monotonically, reflecting a steeper and more skewed curve
’ W 1 .
different for both parametrizations. The minimum X%f is for A;. . o
still optimal for 77,—, but \;—2\3=0 defines the opti- To compare the two learning rate parametrizations, the
i ratio of the optimal learning rates o™ and 7 5" shown in

mum for »,= 7,,. The optimal convergence rates and Iearn-F, 15d) sh that b the ratio is identical i

; ; ; t t t t ig. shows that for smalp the ratio is identical since

ing rates are different with ") g" and 7"< 7" . T91<TC”‘<TCrit For increasingp the ratio falls below 1
(3) TS"(K,0)<T&M(K,0)<T: Although the optimal so- =0 = lw - 70" Increasing : W

lution is now the root of; — 2\ 3 for both parametrizations, S'nfrf 7o I.Z,mnow dete.rmlned by the root Of),‘%_)\l

we still find A %=\ % and 5 °%P'< 7 %' since\ \évg)\g (Ty ' <T<T,"). Increasinge even further, one finds that

> w ) w 3 opt : . o .

Since the three-dimensional parameter space is difficult t§/SQ 7w 1S determined initially by the root solution

visualize, we study the optimal convergence exemplary fof To <7 <T). For largerk one finds kinks in the curves
two slices. when the ratio approaches 1/2. A ratio of 1/2 suggests for an

assumed quadratic eigenvalag that 3™ is close to the

2. Optimal dynamics in Ke space maximal learning raten,.., whereasn ™ is close to the

In Fig. 15 we show the convergence behavior of the paminimum located atn.,/2. The kinks therefore coincide

rametrizationny= n,= 179 [Figs. 1%a)—15(c)] in compari- with a change tar 8”‘<T<T§Vrit above a value oK depen-
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FIG. 15. The convergence scenario as a functiok dér T=1 and variousp given in the legendga) Optimal learning ratey 8’“ for
7o=1o. (b) Optimal convergence rate 3™, multiplied by K for convenience(c) The normalized difference between the optimal and
maximal learning rated 7, 3., . Ratio of the optimal learning ratesS™ and » ™ (d), the optimal convergence rate$™ and\ 3™ (e), and
the normalized differences »,, 9, and A 7o 3% ().

dent ong [e.g., foro =6 the kink is atk~ 100, which co- hidden unit output independent of, the other ansatz

incides with Tcrit(looae)‘wl_ as can be seen in Fig. M].  (o=0T), here termed abscissa, keeps the distance of the
For even largep this solution change is pushed out to larger gecision hyperplane to the origin constant. For lafgel,

values ofK. . ' opt  DOth anseze become identical to leading orders. For srall
The ratio of the optimal convergence rate§” and g however, there are significant differences. In this section we

shown in Fig. 1%e) reflects the above observations. For - . . . .
- i . o have adopte@ as the preferred variable since it results in
small ¢ the minimum ofA, is optimal and the ratio is 1. th . | behavior for fini but il di
Even for largefT values, where the root solutions apply for € more universal behavior for N, but we will discuss
their differences in detail in Sec. V C.

¢=0, ratios very close to 1 are observed for sn@llFor ) . .
larger o, however, the root solutions apply either for both In Fig. 16 the influence of different teacher length values

learning rate parametrizations or at least fgr= 7,, and the T i_s st_udied, wherg the convergence behavior of the param-
widening gap between, for the two learning rate param- €tfizationz,— [Figs. 16a-16(c)] is shown as a function
etrizations leads to ratios above 1 increasing vgthThe  ©of @ for K=10? and a range of values(including theoret-
benefit achievable is, however, limited eventually for lakge ical predictions from asymptotic analyses when ugeftig-
when the optimal convergence of thg—x parametrization ure 16(a) shows tAhat the optimaIAIearning rate increases ex-
reverts back to the minimum of;. ponentionally in ¢2. For small ¢, the prefactor of the
This behavior holds similarly for the ratio of the normal- exponentional increase approaches 1/2 for Idrgehereas it
ized separation of maximal and optimal learning ratesapproaches 1 for small, in agreement with the prediction

A7, % andA 7, % [Fig. 15f)]. The widening gap between from theK—c andT—0 analysegincluded in Fig. 16a)].

A\, increases the ratio significantly above 1, ong§™ is  For largero, however, one finds a prominent change in the
given by the root solution. The nonmonotonic behavior forslope of then o curves, where the position of the transition
some of the lines in Fig. 1§ can be explained by the and its significance is dependent ®n For very small but

change in the degree of skewness\gfaway from a para- finite T this transition is beyond the range of the graph and

bolic form when the minimum solution applies fegro"". the change in the slope becomes less significant. The limiting
behavior is in agreement with tie— 0 analysigincluded in
3. Optimal dynamics ing-T space Fig. 16@)]. For finite T, o™ still increases exponentionally

When considering the optimal dynamics as a function ofin @2 after the transition, but the constant prefactor in the
o andT, two natural scaling ansee for the biase present exponent is altered and decreases for larg&he limiting
themselvegsee discussion in Sec.)llwhich become espe- behavior is in agreement with the findings of tiie-~
cially relevant in the limitsST —o andT—0. The first ansatz analysis for finitek in Appendix B 5, which predicts a finite

(0e=0+1+T), here termed effective bias, fixes the meanlimit of 7" for large 0 also shown in Fig. 1@).

w
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FIG. 16. The convergence scenario as a functiorodor K=10? and variousT given in the legends including predictions from

expansions fof —0, T—. (a) Optimal learning ratey 2™

between the optimal and maximal learning rates,, o™

max*

A Pt and\ $P (e), and the normalized differencesy,, O, and A 774 00t

\ &P shown in Fig. 16b) is similarly intriguing. One finds

that the convergence rate increases initially withup to

maximum, whose position shifts to larger values for de-
creasingT and becomes flatter for increasiiig Beyond the
maximum, \ 3™ decreases exponentionally @?, with the
prefactor in the exponentional increasing withbut saturat-
ing at 1/2 as predicted from the—« analysis. The small
expansion predicts the steep initial increasa i’ correctly,
as the order of the optimal convergence rate for nongei
not O(T?/K) as for zerap but O(T/K). The expansion is a
good approximation for small finit€ and smallé but breaks
down for largerg, where the optimal convergence rat8™
reaches an almogt-independent maximum oO(1/K) and

also cannot account for the eventual exponentional decreas?Tcm
of A ' with ¢ beyond the maximum. This failure is caused

by the implicit assumptiorp?<—InT in the T—0 limit,
which shifts the maximum in 2" to o =, For larger net-

max

for n,=. (b) Optimal convergence rate™. (c) The normalized difference
Ratio of the optimal learning ratefwp andz

o (d), the optimal convergence rates

(f).

The dependence of the optimal convergence eigenvalug4(p)], which coincides withT=1. For p>4.25, T¢"< 1

and A 7,9 falls to a constant below 1. For larg@r, the

behavior is similar but smoother in comparisonlie 1, re-
flecting the fact that although the optimal solution is always
given by the root, its distance to the minimum changes with
o asT ™ rises and falls.
The results for the parametrizationp= 7,, are quite simi-

lar to ny— and to enhance the differences we show the
ratios of the relevant quantities in Figs.(5-16(f). For the
optimal learning rate g™, we also find the change in the
exponentional behavior. For large enodgh T ™, the ratio

of the nPY 75" falls below 1 [see Fig. 16d)] and ap-
proaches a constant limit for large For mediumT (e.g.,
T=1), the difference is most pronounced, reflecting the
many changes in the type of solutions due to the variability
andT &™. For smallg, the minimum solution of is
optlmal for both learning rate parametrizations. In the range
of 0.40sp=<4.25(i.e., 0.55s0=<6), TS"<T< T and the
ratio drops significantlf27] towards 1/2 until alsa &< T

work sizesK not shown here, one finds that the position of and the ratio rises again towards the asymptotic behavior.

the maximum shifts to largep and becomes flatter. This

effect leads to the shift of the maximum = in the K
— o0 expansion.

The behavior of the normalized separati®g,, o

in Fig.

The improvement by using a large bias learning rate is
reflected in the ratio. "\ 3 [Fig. 16€)], which increases
monotonically with ¢, for T or ¢ large enough so that
T>T". IntheT>TS" region, the ratio\ P\ SPincreases

T<TS" the minimum of\; is optimal andAnWmaX in-
creases monotonically towards 1; i.e.; becomes parabolic

for Iargeé. ForT=1, we find the same behavior for small
o, but find a prominent kink a@ ~4.25[i.e., 0~6, see Fig.

that approactay=1 anda,=1 for largeT as predicted by
the T—oo analysis. Using largey, is similarly beneficial in
the same region of andg with respect to the separation of
maximal and optimal learning rates as depicted in Figf)16
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For largerT, we find the same regression behavior of therate stays constant for aii. However, if theK—co limit is
ratio A 7,, %/ A 7o 9% with bo+b,02, whereby andb, are  taken simultaneously witfi—, the convergence rate either

againT-dependent constants with the asymptotic limit@?>  remains constant fom,—c or decays algebraically with
for T—=. In the curve forT=1, one observes several (1+ )2 for 5,=7,. Similar behavior is also found for fi-

swerves and a kink due 5™ or TS crossingT=1. nite T and largeK for small enough.

The underlying reasons for this difference can be ex-
plained most easily for the infinit€ case, where the hidden
unit output becomes binary and the subsequent network out-

In comparison to the analysis of the convergence phasput probability distribution is binomial, as teacher hidden
for zero-fixed biasef18], the extension to variable nonzero units are uncorrelated. The probability of a single hidden
biases, has revealed several insights. For sialihere the  output to be+1 parametrizes the binomial distribution and
tralgmg for the zero-bias case is slowed down by a factokg 1/2[1_9@)], ie. 1/2 forézo and decays exponention-
1/T¢, arguably due to the nearly linear network output mak- llv fast for | 5 (e 2. Th di d
ing the distinction between different units difficult, one fings & fast foriargee (e ®). The E:orrespon ng meap an
that the scaling assumption for the bias has a dramatic imstandard deviation are.=—Kg(e) and o= V1-g*(e),
pact. This can be understood qualitatively by considering théespectively. Since both student and teacher networks are

network output distribution, which can be calculated inhighly correlated, the error signal should be at mG&tL/K),
closed form in theT —0 limit. i.e., at most two hidden units disagree, leading to a possible

For finite abscissdusing the scalingy = JT), the hid- increase of the learning rate with. For large effective bias
den unit output distribution is Gaussian with meané, this event becomes exponentionally unlikely and the error

w=— /—2K/7ré\/f and standard deviation= JZ/_W\/T The signal is identically zero most of the time. The learning rate,

probability of a positive6land hence negatiyeutput remains however, cannot be_ increased accordingly since Fh's would
. - lead to an exponentionally large update step size in an error
constant for T-0 and is equal toH(g+vK), where

e ) , event. The convergence rate has therefore to decay exponen-
H(X)=J dx/ y2mexp(-x72), i.e., even for smalll the  tionaly. For K—oo, the binomial output distribution be-
output of the hidden unit will have some probability of being comes Gaussian with the above mean and variance, leading
both negative and positive, but the mean goes to zero. Fqp smooth network outputs and error signals. Here, the learn-
this scaling, one finds a slight |mprovemevnt in the CONVering rate can be increased exponentionally, which may be
gence rate for nonzero bias by a factor 202, suggesting linked to the exponentional decrease of the output variance

that breaking the symmetry of the network output distribu-¢,, large ¢ combined with the implicit assumption that

tion around zero is beneficial, but a more significant im—Az<In K_This behavior carries over qualitativelv to finite
provement is not possible since the hidden unit outputs arf ' a y

A . : ; 52 ; -~
mainly in the linear regime where the student cannot dis@nd K for ¢ small enough, and can explain the initial

criminate efficiently between the teacher hidden units andnatching increase of the optimal learning rate and the exten-
the convergence rate still decays witR. sion of the region of almost constant convergence rate for

For finite effective biagusing the scalingg =90 1+T), largerK.
the network output distribution is also Gaussian for srifall

but with mean u=—+Kg(e) and standard deviation

o=\2Iwexp(—0%2)\T. The probability of an output of op- The scope of this work has so far been restricted in sev-
posite sign to the mean output vanishesTer 0. The single  €ral ways. One obvious restriction has been the fixed hidden-
hidden unit output is concentrated in the nonlinear region oPutput weights. Although soft-committee machines with bi-
the sigmoidal activation function and one could argue tha@ses are universal approximatof8], in practice it is
most information about teacher parameters can be extracté@flvantageous to use adjustable hidden-output weights. This
by the student in this region as long as the hidden units aréxtension is straightforward in terms of feasibility, but adds a
not too saturated, leading to the improvement in the converfurther dimension to the space of parameters to be investi-
gence rate byO(02/T). gated. We expect our results to be at least _qualltatlvely cor-
One could further speculate that the increase of the opti’€Cl: but we cannot rule out that the dynamics become even

mal learning rate matching the suppression of the gradient igcher with more suboptimal fixed points. Unfortunately, the

facilitated by the exponentional decrease of the network outrks to date that have allowed for adjustable hidden-output

put variance withp . For finite T and largero, the results for umne;ify[%g;k?xg. not discussed the issue of hidden unit sym
the T—0 expansion become inaccurate @f<—In T and We have furthermore restricted ourselves to realizable
one finds that the optimal learning rate growth cannot becenarios, where the student network can learn to imitate the
sustained, leading to the eventual exponentional decay of th@acher network perfectly. In real learning scenarios, one ex-
convergence eigenvalue with? as observed for finite. pects both structural unrealizability, due to a mismatch be-
Due to theT dependence of this breakdown, one even finddween the function space of the student and the task, as well
the anomaly that training can be momentarily improvedas unrealizability due to corrupted training data. Both types
when decreasing slightly [see Fig. 16o)]. of unrealizability can be incorporated in this framework, by
The unsustainability of the optimal learning rate growth isstudying K#M and by allowing for noise on the teacher
epitomized in theT—co limit, where the optimal learning weights and/or outputs, respectively. Both have been ad-

C. The impact of adaptive biases

VI. TOWARDS MORE REALISTIC SCENARIOS
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FIG. 17. A typical training dynamics is shown as a functiornofor an unrealizable cad¢=3 andM =4. The teacher tasks are of the
form T,m= 8,m(n+1)/2 for graded and ,,,= &, for isotropic teachersg,=(2n—>5)/5y1+T,, for non-degenerate arg,=0 for degen-
erate teacher biases. The common learning is alwgys2. The evolution of the student-student overlaps (a), the student-teacher
overlapsR;, (b), and the student biase (c) are shown for7,,. The generalization errog, (d) is shown for all tasks, with the inset
magnifying the escape out of the symmetric phase for the students learning the less symmetric tasks.

dressed already for the soft-committee machine without bieally. Since the student network does not have enough re-
aseq2,28,29. sources to model the teacher task adequately, it chooses to
Here we will briefly assess the effects arising due to thejedicate two units (1 and 3) to specialize primarily on the
introduction of adjustable biases in the case of structural unteacher hidden units (1 and 4) with the largest absolute bias
realizability. In Fig. 17 the evolution of the trainir_‘lg is_ shown yalue; which is reflected by largR,; andR,, values and the
for K=3 andM =4, i.e., when the target function is more proximity of the student biase;, and 65 to the correspond-
complicated than the mapping the student can achieve. Thgq teacher biaseg,; ande,. This seems sensible since these
teacher overlaps ar@,m=3Jnm(n+1)/2 for graded and o units have on average the largéasolute output. The
Thm=Jnm for isotropic teachers. The teacher biases argast student unit 2 specializes almost equally on the two re-
@n=(2n—5)/5J1+T,, for nondegenerate and,=0 for  maining teacher units 2 and @arge R,,, Ry3 and 6, lies
degenerate teachers. The common learning rate is a|Wa!f>%tweengz 03). The remaining student-teacher overlaps fall
70=2 and the weight initialization i%Q;;=(18+n)/100, roughly into two groups: the student unit,4), which are
¢;=(n—2)/100, and random overlaps as outlined in Sec. lll.highly specialized on one unit, acquire a relatively large
The initialization was chosen quite symmetrically to makegyerlap with the remaining teacher uni®,3) for which no
differences between the tasks more pronounced and to ensiigdicated student unit exists, whereas they retain only small
convergence to a fixed point with the lowest generalizationcorrelations of either positive or negative sign with those
error for the most symmetric task . teacher units, which are already modeled almost entirely by
The main focus will be on thd;, since for this task the another student unit. The size of the individual student-
effect of nondegenerate teacher biases can be separated fromacher overlaps is also highly correlated with the proximity
the effect of graded teacher norms. In Figs(al#17c) the  of the associated student and teacher biageg.,
evolution of the overlapR;;, Ri, and the biases); is  R,3>R;3>Rg; for fixed teacher unit 0R3,>R33>R3,>Rg;
shown. The student is initially drawn into a symmetric phasefor fixed student unjt One further notices that the student
with similar values for student length®;; and correlations biases are positioned to ensure that the means of the student
Qjj [Fig. 17@)]. This is mirrored by similar student-teacher and teacher network output distributiofwhich is just the
overlapsR;, shown in Fig. 17b), signaling the lack of sig- sum of the means of the individual hidden unit output distri-
nificant specialization with a specific teacher node. The spebutions in a networkare very similar. Matching the mean of
cialization is driven by the student biases depicted in Figthe teacher output distribution is obviously a necessary but
17(c), whose symmetry is broken first and whose trajectoriesiot sufficient condition for achieving a small generalization
do not cross, although they were initialized quite symmetri-error.
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Obviously, the specialization process described above inormalized and unnormalized committee machine are sub-
dependent on the teacher task presented. For graded teack&antial and the results are therefore quite different. For
tasks, the larger teacher hidden unit weight vectors lead to §>M, the unnormalized soft-committee machine is overre-
larger variance of their output distributiottand ultimately ~ alizable and the excess nodes can be pruned away to achieve
the output distribution of the whole networkThe student Perfect generalization. This is obviously not possible for the
hidden units have therefore to compromise between prima2ormalized soft-committee machine due to the different nor-
rily modeling large variance by specializing on teacher unitgnalization factor, and the task becomes unrealizable with a
with large weight norms and modeling large mean by Spefmltg asymptotic generall.zauon error. F&<M, the nor-
cializing on teacher units with largeffective biases. We Malization of the committee machine leads to generally
still find that the student biases are positioned to ensure thAfWer asymptotic values of the order parameters with a re-

the mean output is approximately identical, but the Studen§ulting generalization error that is always lower than for the

also accounts for larger variances. For degenerate biases, Owénormahzed case. This seems 10 be due to the normaliza-

finds that the dynamics and the optimal attractive fixed poin%Ion keeping the variance of the network output distribution
. . . f constant ordeKfor uncorrelated teacher weight vectors
are very similar to the fixed bias case for both graded an

) . : . . respective of the number of hidden units, whereas the order
isotropic teachers, with the student biases taking values closoq the output variance is mismatchegK and M) in the
to the degeneratéeffective teacher bias positiof30]. unnormalized model.

In Fig. 17d) the dynamics of the four different generic
tasks are compared by following the evolution of the gener-
alization error. As for realizable learning scenarios, one finds VII. SUMMARY AND DISCUSSION
that the specialization process for the t&gkis by far the
slowest due to the slow breaking of the symmetries. For th?h
task 7§ one finds more than one plateau in the generalizatiorﬁ
error[see inset of Fig. 1(@)] characteristic of the sequential

This research has been motivated by recent progress in
e theoretical study of on-line learning in realistic two-layer
eural network models—the soft-committee machine,
trained with back-propagatiof2]. The studies so far have
Yxcluded biases to the hidden layers, a constraint that has

7", with a slight speedup for graded teacher lengfis  niversal approximatof8], although within the framework
Unlike in realizable scenarios, the dynamics approach a nong; jssye the model can only be studied in a limit where the
zero asymptotic generalization error, which is smallest forapproximation proof does not necessarily hold as it may re-
the task7y with most symmetries. For the tasks presentedyire the number of hidden units to scale with Neverthe-
here, the breaking of the bias degeneracy results in a smallgfss the dynamics of the extended model turn out to be very
increase of the generalization error than the breaking ofich and more complex than the original model, although we
length isotropy. This feature, however, depends on the pahgaq to restrict ourselves for computational reasons to small
ticular choice of teacher norms and biases. networks.

Similar to the realizable case, we also find that the dy- For nondegenerate teacher biases, one finds that the sym-
namics are sensitive to the initial conditions, especially formetry in the student hidden unit space can be broken almost
tasks with many symmetries such &g, and the asymptotic jmmediately by the biases, provided the student biases were
network configuration can vary significantly in their gener-initialized asymmetrically, speeding up the learning process
alization error. For theTy, the basin of attraction to the considerably in comparison to the fixed bias model where the
optimal solution described above is quite small and requiresraining process can easily be dominated by the symmetric
highly symmetric initial bias values. Otherwise the bias dy-phase characterized by a lack of hidden unit specialization.
namics show the grouping around the true teacher bias valuehese results suggest that student biases should in practice
similar to the realizable case with the notable difference, thabe initially spread evenly across the input domain if there is
the bias values seem to diverge instead of converging tpoa priori knowledge of the target function. For degenerate
(suboptimal fixed values. teacher biases, however, especially in combination with

For nondegenerate biases, one also finds a multitude afimilar teacher lengths, such a scheme can be extremely
stable network configurations depending on the initial condicounterproductive as asymmetric initial student biases se-
tions, which all feature quite similar generalization error. Forverely prolong the training and can in many cases even trap
the taskT,,, for example, a different set of initial conditions the learning process permanently in attractive fixed points.
[changing only the norm®;; = (1+n)/10] leads to student Although attractive suboptimal fixed points were also found
unit 2 specializing primarily on teacher unit 3 instead ofin the original soft-committee machine mod&0], these
specializing almost equally on teacher units 2 and 3 angeem to have been restricted to overrealizable cases and the
results in a slightly smaller generalization error. We find thatassociated basins of attraction have been very small.
the evolution of the dynamics to solutions with similar  Unlike in the fixed bias case, the initial conditior;
asymptotic generalization errors are qualitatively similar, butand 6;, which can be manipulated in real scenarios, influ-
one does not find a dominant basin of attraction to a particuence the training time considerably, and can even cause com-
lar solution as in the case of fixed biases. A more detailegblete training failure. To gain a qualitative understanding of
investigation is therefore beyond the scope of this paper anthe influence of the initial conditions, the basins of attraction
will be reported elsewhere. to the optimal solution were therefore studied exhaustively

Finally we would like to point out that in the case of for K=M=2. One finds that attractive suboptimal fixed
student-teacher mismateh# M, the difference between the points exist for many training scenarios, including graded
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teachers and even nondegenerate teacher biases. The ragteets the strong interaction between the hidden units, e.g.,
of initial conditions attracted to these suboptimal networkthe importance of the difference in initial thresholds or the
configurations diminishes with increasing asymmetry of theshrinking of the basin of attraction for larger networks.
task, especially for nondegenerate teacher biases, where the An initialization procedure that provides both stability
attractive fixed point vanishes eventually. In the task with theand fast convergence speed for all tasks seems therefore dif-
smallest basin of attraction, isotropic teacher weight vectorsicult to realize due to the inherently different requirements
and degenerate teacher biases, which was studied in gregb tasks with degenerate and nondegenerate biases. The
deta”, one finds several Unexpected results. FiI’St, the basb}'obakﬂy most Successfu' approach is to Opt for a Combined
of attraction is mainly dependent on the difference in theapproach of medium spread of the biases and large initial
initial student biases, rather than their individual abscissas QReights, a reasonable separation of weight and bias learning
the resulting mean. Second, the basin of attraction, with r€zae  This must be combined with a criterion that restarts
spect to the student biasés, grows with increasing student oy ork biases for hidden units trapped in an attractive sub-
norms, but the corresponding abscis8a ¢/ Q) decreases. gptimal fixed point. Since for most attractive fixed points
Third, the basin of attraction is enlarged by larger initial found, the student hidden units are not highly saturated,
student-teacher overlaps and training should therefore be legg  the absolute values of their mean output are reasonably
prone to failure for smaller input dimension. less than 1, it is not sufficient to just select saturated units
Addltlonally, .the mfluence_ of the learning rgtes on the ith large effective bias. This criterion must therefore ac-
basin of attraction was studied for the same isotropic an(%unt for the actual bias values in combination with correla-

degenerate task._ For a common Ie_arning rate fpr bias_es ABns between the student hidden unit weight vectors. For
weights, the basin of attraction shrinks to a minimum in the

. f fastest . for th Il oot ersistently large correlation between a pair of weight vec-
region of fastest convergence, 1.€., or tne overall oplimayq, g 5ng very similar lengths, the biases could, for example,

Ye reset to their mean value. If such a strategy works in all

small Iegrning rate .bUt alway;; remains finite. The SeF’ar""tic”%ituations remains to be shown, which goes beyond the scope
of the_ blqs ?‘”d we_|ght Iearnm_g rate seems, however, MOIEt this paper. Possible difficulties are likely to be unrealiz-
effective in increasing the basin of attraction. Whereas on

@ble scenarios, where persistent correlation is caused by a

must necessarily pay dearly for stability with a decreasg Mack of student resources and a successful algorithm would

convergence speed when employing a small bias or weigli, e 1 pe able to distinguish between the two. Its usefulness
Iea_rmng ra'te', a large bias learning rate does not COMProMISGould then have to be further tested in finite size systems
training efficiency. and real world problems. However, as already mentioned, in

Although most of the resits found f¢(.=2 also Carry - cases where the training set is known in advance, many al-
over q_uahtatl\_/ely to Iarger networ ks, the size .Of the pasm Ofgorithms are available that aim to infer good initial condi-
attraction shrinks considerably with network size, which may; < from the training datésee, e.g.[24] and references
partly be contributed to the substantial increase in the nu herein T

ber of attractive suboptimal fixed points with different inter- ke for the entire training process and general learning
nal symmetries. In particular, we have found that the use of @.enarins, where we had to restrict ourselves to small net-

large bias learning rate or the adiabatic elimination of th%orks the dynamics can be studied and optimized for all

biases can actually decreasg the basin of attraction for Iarg’T:iretwork sizes for the isotropic degenerate teacher task in the
networks and degenerate biases.

convergence phase, where hidden unit symmetry is alread
Unlike preliminary result§8], which seemed to support verg P W I Hntt sy y! y

- M S _ broken successfully and the student approaches the optimal
the h.eu”St'C suggestion in an ear_he.r wded] to spread the .solution. Since this type of task is the slowest not only in
abscissas across the input domain in order to speed up traifs. < o¢ overall training time, but also in the convergence

?n:gl, our more extensive W.Ork clearly suggests that such thase itself, the results should give us a bound on the per-
initialization scheme may in general not be advisable. Ou ormance of other tasks.

_results show that in terms of the |n|t|a_1l|zat_|on, the d|f_ference One finds that optimal convergence is achieved for an
in the threshold values and not the individual abscissas ar:

X infinite bias learning rate, suggesting that &1(1) rather
the more relevant variables. Furthermore, such a scheme w han an O(1/N) bias learning rate is appropriate for finite

most likely fail to convergence to the optimal solution when stems once hidden unit symmetry is broken and the input-

some of the biases are degenerate, although one can o dden weights dominate the learning behavior in this phase.

speCL_JIate how commonly these tasks are encountered e dependence of the optiméakeighy learning rate has

pragilr(]:e. . K22], which relates the basin of at been studied as a function of the number of hidden ufits
Er préevious wor » Which refates the basin ot a4 yhe teacher length with special emphasis on the influ-

traction of the weight initialization with the learning rate, . N ) .
seems also to be partially contradicted by our findings. Al-€NC€ Of nonzerdeffective biase, which provides the most
seful scaling of the bias in the convergence phase. We have

though the basin of attraction does grow with decreasin - ; A
learning rate, as found if22], the functional relationship estricted ourselves also to two learning rate parametrizations
for the biasesz,= 7,, and n,—«. One finds that for both

given for convergence in this workyp(<Q;; + 0?) fails to .
predict a finite boundary for an infinitesimal learning rate.Small T and smallg, there is either no or little difference
Furthermore, the treatment of the biases as just anothdletween the two parametrizations. The advantage of an in-
weight parameter suggests a growing basin of attraction wit§reéased bias learning rate grows, however, for large enough
both increasing weights and biases, whereas we find that approximately proportionally t@?.

biases actually have the reverse effect. The work also ne- The influence of the value of the effective teacher biases



3284 ANSGAR H. L. WEST AND DAVID SAAD 57

é manifests itself for both parametrizations in the initially )
surprising effect that for mosE values the learning perfor- C=o
mance actually improves for small nonzero bias. This can be

explained by postulating that most information on the paramin the following all averages are taken with respect to this
eters of an individual hidden unit can be obtained in thedistribution and making use of the convention that indices
region where the sigmoid is already nonlinear but not quitg j k,| and n,m label student and teacher nodes, respec-
saturated. In this region one finds an exponentional increasgely.

in the optimal learning rate matching the suppression of the The generalization error then takes the form
gradient. This increase, however, cannot be sustained for

Q R]

RT T (AL)

~ 3 2 M K,M
largero and leads to an eventual exponentional decay of the Y | K K .
. L . . €g=51— X Ja(nm)—2/— > Jy(i,n)
convergence speed @7 for any finiteK. This exponentional 2K| Mpm=1 MinZ1
decay is delayed to Iarg@rvalues for small teacher length K
and Iarge network siz&, which may b_e attrlbuted_to the +<Z La.0)1, (A2)
increasing smoothness of the error signals allowing for a =

larger learning rate. This fact is epitomized in fhie-0 and
K—e limits, where the convergence rate does increase urWith the integral J,(1,2)=(g(u1)g(u)), whereu; represent
abatedly or decreases at most algebraicallyinrespec- Mmembers ofix,y} and the sigmoidal transfer functiap is
tively. here take_n to be the error functlm(u_)zerf(vu_/ J2). We

The choice of the learning rate is therefore important indenote withly, Jq averages oved variables with one and
both the symmetric phase, where it can help to avoid afWo g terms, respectively. Unlike in the case of fixed zero
attractive fixed point, and the convergence phase, where tH#ases, only integrals involving a singieterm can be cal-
optimal value varies significantly in the relevant region of culated analytically, whereas general Gaussian integrals in-
parameter space, making it difficult to choose good learning©IVing g* terms of shifted arguments have no known ana-
rates in practice. The problem of training is also exacerbatelytical solution. However, these integrals can be simplified
by the difficulty of student parameter initialization withcait ~considerably to make a numerical integration feasible. There
priori knowledge about the learning task present, which car@reé several possible representations, e.g., the Kendall series
change the basin of attraction to the optimal solution consid€Xpansion, but we have chosen one that consists of a single
erably. Gaussian integral of two error functions. We have found that

Future research effort should therefore be aimed at devighis form has the advantage that the summation over units
ing more sophisticated on-line learning algorithms, whichand the integration can be interchanged, greatly improving
are able to infer information about the teacher task and th@umerical accuracy for fixed computational cost.
progress made in training by monitoring the student param- In this form the integralJ,() is given by
eters and subsequently adjusting the learning rates accord-
ingly or rest.arting higden qnit§ 'trapped in. suboptimal fixed 32(1,2):J Dtg,( \/gzc_llt
points. The introduction of individual learning rates for each
hidden unit, already shown to be beneficial for the fixed bi-
ased mode[19], seems a further direction worthwhile to —9,)g (
pursue. Since the learning dynamics have shown to change ’
significantly with the introduction of adjustable biases for
realizable scenarios, it appears to be of obvious interest tohere
investigate the influence of unrealizability more systematic
than could be achieved within the scope of this paper.

O'2C12t - 192

2 7 o~7 |
Vo?Cyg— v20?C3,

(A3)

) o dt t2
Yi=1+v°e°C; and Dt=-—exp — =
NP5 2
is the Gaussian measure, with any integral without explicit

A.H.L.W. would like to gratefully acknowledge financial |imits is from — to -+ . The dependence of the integral on

Support by the EPSRC and the Department of PhySiCS of thﬂ]e Sigmoida| ga”'v can be absorbed by redefining
University of Edinburgh, and the financial support and hos-

pitality of the Neural Computing Research Group at Aston d=vd, and “C‘ij: V252C
University, where part of this research was carried out. This
research was further supported by EPSRC Grant No. GR{ rescaling that also holds for the other integrals below. To
L19232. evaluate an integral explicitly, the full covariance mattiis
projected into the relevant subspace. For example, the rel-
evant elements ford,(i,n) are C;1=Q;i, C1»,=R;,, and
C,,=T,,. Itis a property of multivariate Gaussian distribu-
The generalization error is calculated by averaging thdions [2] that integrals of reduced dimensionality such as
guadratic loss functior(3) explicitly over the activations J,(1,1) are generated from the general fody(1,2) by the
{x,y} (and implicitly over all inputy which are multivariate appropriate constrainign this caseC;;=C1,=C,)).
Gaussian distributed with zero mean and covariance matrix ~ The differential equations fo®, R, and @ are calculated
given by similarly and take the form
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APPENDIX A: DYNAMICAL EQUATIONS
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dQIJ 77w72 \/K v .. . « . .

da = k] Vw2, tabhmt daim = 2 (), K0+ 15(),1,k)

2\2( g M K K,M
IS 34,0 nm) -2 W, delid kot Z 3Gk (Ada)
K Mnm=1
dR; y? <
T 2 Snm—3 Ik, (A4b)
dé, 7]072 \/K " . « .
da=" M, M= Lk (A4c)
|
where the two integrals 1,(1,2)=(g’'(u;)g(u,)) and G =B (BT 4 CoTas
13(1,2,3)=(g’ (u;)u, g(uz)) can be evaluated analytically, 1= Gy~ (Cailg+ Cal'yy),
whereas J,(1,2,3,4)(g’ (u;)g’ (u2)g(uz)g(us)) can be )
simplified to a form similar toJ,() and one finds i == (12 + Fol'y),
> 1 1732 with the obvious extensions, e.g4/ =1+C/,. Again, one
15(1,2=v\/ ————ex 91(01,), (A5a) infers the elements of the reduced covariance matrix using
™ \/Z 2 l/’l the unit labeling convention and the appropriate dimension-
ality reduction.

5 1 132\[8.5 As mentioned above the gainrescales all order param-
13(1,2,3= \ﬁ exd — - ]| 2% 1g (©y,) eters and the biases explicitly and furthermore leads to an
soe LN 2 gy " implicit rescaling of both learning rates by in the differ-

ential equationgA4). The learning rates are further rescaled
\F R\ PP RO ;{ 1 , ) by the linear output gain by?. The total rescaling of any
+\/———=—=exp —-01%,]|, (A5b) bias and the bias learning ratg therefore is
TV 2
_ 2')’2
~ = = ~ J=vd¥, and = Aba
1 05— 2C 20,05+ ¢y 95 ’ 7Ky T (63
J4(1,2,34=v 2ex
q’lZ

2

Dtg;(VC' 3t —9'5)

T
Clat—19',

X0 ——— ok
VC'aap,—C3s

where we conveniently define

(A5c)

\I’U: lﬂilﬂj—éﬁ )
@l_:’éijﬁi_‘//i’éj
! ViV ’
_:¢162i_61261i
u R EP '
_:¢261i_61262i
2 A EP '

and the primed variables

For the weight order parameters and their learning fgje
the input variancer? can also be absorbed to give

1/2 ’)’20'2

62 v’o?C and ;W:(T)

Nw - (ABb)

In the remainder of the paper we will therefore set
v=7y=o0=1 without loss of generality.

APPENDIX B: THE REDUCED EQUATIONS
CONVERGENCE DYNAMICS

For a realizable isotropic teacher scenario characterized
by K=M, T,,=Td,m, and degenerate biases,= o, the
number of free parameters can be reduced with the ansatz
(13), to just five variableR, S, Q, C, and, which gives an
accurate description for the dynamics when the student bi-
ases were not initialized too unsymmetrically.

In the convergence phase one can expand the differential
equations(A4) in a Taylor series to first order around the
zero generalization error fixed pointQ*=R*=T,
C*=S*=0, and#* =p,

4

=2 m

dp.
|]pj:
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wherep;=P;— P} andP; are generic order parametevge
use the ordering®1=R, P,=Q, P;=S, P,=C, andPs=6
following the convention of earlier worf2]), and the eigen-
values and eigenvectors of the Jacobian matfixof first

derivatives determine the solution of the linearized differen-

tial equation.
The elements of the Jacobian matrix are explicitly given
by
. :_Eﬂvexq_ezl(l*ﬂ)”(“;ﬂ)_ 2Te?
o or K (1+27)32 | 1427
(Bla)
_1 o fA+2D)-207T [ e
Yo KT (1421)52 1+2T
TQZ % QZ
—(K-1 exp ———=|, Blb
( )(1+T)3 1T (B1b)
2 ny K-1 2 To?
- ~0%(1+T) =
Mis=— ¢ (1+T)2e (1+2T) T+T)"
(Blo
_n2
Moge — 2 Mo qyeezam LAF DT
“owK (1+T)3
(B1d)
—021(1+2T) _
m15=Eﬂng 29 ¢ + K-1 e*QZ/(1+T) ,
7 K (1+2T)%  (1+T)?
(Ble
2
LA gagn (FT(AH2T) 4 2T0
“om K (1+2T)%2
2mw 1 e—20%/(1+4T)
m K| J1+4T
K-1 2
—202/(1+2T)
T1r2t® H (B19)
_ A e\ A+ +Te?
Ma3= ;?( Jex 1+T (1+T)3 Mas|»
(Blg
m. :Eﬂv ;efgzl[lw)(nan
2 7 K| Ja+T)(1+3T)
(K=2) 2
+—————e 072D Bih
(LrTLiaT (B10
27y 1 Qz .
Me1= 7K 1+TeXp(_ 1+T1) (B1D)
1 7y (1+T)—p? 0? .
msz——;?W —1¢7) ®BL
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o2 (K=2)(1+T)*-Te? [ ¢?
337 T K (1+T)3 1+T
— exp(— o ) (B1k)
Vi+2T 1+27))
2 1y ng Qz
m34——;?(1+_|_)3ex “1rT) (B1l)
¥ K (147)2 1+T)’
4 ny 0? 1 ,
mAl—‘;?eXp(‘ln e Mz (BN

4 py| (K=2)(1+T)%+Tp? p( 0?
I (1+T)° 14T

+ ! o*
1+2Tex 1+2T

2 my 2 202 2
_ —204/(1+2T) _ —0/(1+T)
7 K|1+2T° +(K=2)e
% 4 e—QZ/(l+2T)+K__3e—92/(l+T)
V1+2T 1+7
(Blo)
2m 0 0?
M TR (e ZT)s/zeX% “1eor) BW
—02/(1+2T) _
mszz_EEQ °’ + 1 e=@%(L+T)
m K= (1+2T)¥2  (1+T)2 ’
(B1lg)
2 7, 0 0?
m53——?(K—1)(1+—T)26X[{—m , (Blr)
- _ 2y exd —?/(1+2T)] . K—1e_ezl(m)
55~ 1K Jit2T 1+T '
(Bl

The remaining elements can be deduced by the matrix rela-

tions

My3— 3 Mpy=My— 2My,, (B2
Mag— 3 Myz= Myy— 2Mgy,
Mi3— 3 Mpg= My~ 2Myy,

1 _
M3~ 5 My1= My~ 2M3y,

My5=2M;5,
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Mys=2Mys, we obtain only one nontrivial, i.e., nonzero, solution for Eq.
(B5a and hence the weight learning raig,, coinciding
with A\;=0, and in particular no nontrivial solution for Eq.
Mss= — Ms3. (B5b) and hence the bias learning rajg. This and numeri-
cal solutions suggest that the optimal bias learning rate is
located at infinity.
The characteristic polynomial of such a Jacobian matrix, This can be explicitly shown for the special cage-0,
whose zeroes define the eigenvalues, separates into a qughere the eigenvalue spectrum separates further. A closer
dratic and a cubic equation. The two eigenvalues given bynspection of the matrix elements reveals thatia)l andm;s
the quadratic equation correspond to those of thetdma-  for i #5 become zero and the eigenvalues take the form
trix with fixed biases and are given by

N34=3[A+Bo*=(A;—By)?+4C,D,],  (B6d)

N1o=3[A1+B1*(A;—By)*+4C,D,], (B3a

with A5=Mss, (B6b)
Ar=my—3 My Bi=my—2mg,, (B3b)
recovering the convergence dynamics of the weight order
Ci=Mg— 5my; Di=my—2my,. parameters in the isotropic case with fixed biases studied
previously[18], but for an extra eigenvalue describing the
These eigenvalues are nonlinear in the learning gte decay of the student biases to their optimal value. Since only
The remaining eigenvalues are given by the solutions tdhis eigenvalue dependgnearly) on 7,, the optimal bias
the cubic equation learning rate is at infinity.
To make progress in the general case of nonzero teacher
bias, we restrict our study to two possible parametrizations
A+a N2 +a\+ay=0, (B4a) o= m,=mn, and a finite weight learning rate,, with 7,
—o, In the following, we use the convention that the
with coefficients (weight learning rate will be denoted by for the generic

case or when a result is valid for both parametrizations.
For large n,, we expand the characteristic polynomial
a;=—(Mss+Ax+B5), (B4a) asymptotically with the two ansee A= O(7,) and
A= O(1). Onefinds that the characteristic polynomial sepa-
rates as expected into
a;= Msg(Az+ By) + (AzB2— CyD ) — ExMis— MsyMss,

A= (A, +B,)— Eomyst+ mMsmss
ap= —Mss(A;B,—C5D5) + Msy(MgsA, —MysD ) 34232t =2 2Mgg
+Eo(mysBy—m3sCy), (B4b) Eomys+ m54m35> 2

Mss

+1{(A,—B,)?+4C,D,+
where

2(A2_ B2) (Eomys— M5 mss)

_ _ 1 Ms5
Ap=my1+2Myp,  By=Myyt 3 My, "
E->ms:Cs+ memycD
) _ 4o2Mesto 54152} ' (873
Co=mg+2mg,, Dy=my+ 5 Myg, (B4o) Msg
E2 - m51+ 2m52 .
A5=Mss, (B7b)

These eigenvalues are negative for all valuegpfand 7.
For n,= o= 10, these eigenvalues are also linearzin
This can be confirmed by finding the zeroes of the deterwhich is similar to the zero bias case, but with corrections to
minant in the two learning rates,, and n,, which corre- the eigenvaluea ;4 due to the finite biases. However, these
spond to an eigenvalue becoming zero and therefore defirgigenvalues become independent of the value of
critical (maxima) learning rates. For the equations for the In order to study the optimal value of the learning rate
determinant roots which gives the fastest decay to zero generalization error,
one has to assess which mode, i.e., eigenvalue and associ-
A,B,—C.D;=0, (B53) ated eigenvector, contributes to its decay. We therefore ex-
pand the generalization errofA2) to second order in
a,=0, (B5b)  {q,r,s,c,d}:
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—o?%i(1+2T) +2T)+ 02 1T)2 2
€g=—— (Zr_q)_i(z,’_qyw )\SZ_EE w681 [ (1+7) + Te
m1+2T 4 (1+2T)? 7K py(1+T)%+ 9, T2 (1+2T)%2  (1+2T)52
(1+2T)—202 2r—3q _ 2 (B9b)
+q(r—q) + 90 + 92 1+T)
(1+2T)2 1+2T
with the auxiliary variables
K-1 2 (1+T)—p 2
—————e 97+ D| (2s—c)+q(s—¢c)—————— - _ @
m(1+T) BemerasmO fr=ex — T o7) (B899
Te?
1 0?2 E=exp — (B9d)
+ (45— 2¢?—¢? 2 1+T)(1+27T))"
4 vy (L+T)(1+2T)
These define two critical learning rates
_ 92 V1+2T
+3(2s— 20+q)1+_|_ 0 (B8) 77Vr{/]ax:ﬂ_ T (B103
. . . crit 147 max
Unfortunately, we were unable to find analytical solutions to N = Wﬁ> Nw (B10b
1¢2

the eigenvectors. Numerical solutions, however, show that
the eigenvectors associated with the eigenvaluggs are
orthogonal to the first-order terms in the generalization error
and thus cannot contribute to their decay. These modes a
therefore only relevant for second-order terms in the gener
alization error with a decay rate of\3 4 5. As discussed in
Sec. V, the fastest convergence is given by @4). This is
usually achieved either for°", where 2A;=X\,, or for
7%, which is defined by the minimum of;.

It is in general unfeasible to optimize the eigenvalues with

respect to the learning parameter( »,, or ny) analytically

Where)\l is identical to zero () [corresponding to the
maximal learning rate that can also be obtained by solving
Eq. (B5a)] and diverges £ &™), respectively. Inspecting Egs.
(B9) and (B10) suggests that the natural rescaling for the
learning rates for nonzero teacher bias in this limit is

for arbitrary K, T, and ¢. However, one can make some =y and mp= . (B1D
progress in certain limits oK, T, and ¢, which we will
investigate below. We further mention in passing that E@®9a) is only a valid
expansion of\, for 7,< 7;5{“, beyond which the ansatz
1. Large-K limit A= O(K'1) breaks down, a fact that becomes important

The dominant terms for a large number of hidden units fofvhen optimizing the dynamics with respect to the learning
all relevant quantities can be extracted by an asymptotic sé@te-

ries expansion under the self-consistent ansgjz O(1). For both parametrizations 7%= 7,= 7, and 5, with
For the two relevant eigenvalues one makes the ansatzs= 77 —) this optimization is performed by calculating
\;= O(K~1) and finds to leading order both 7" and ", i.e., solving 23=X\; andd\,/d»=0,
respectively. Since, is only a function ofp,,, 7 °pt is iden-
N 4 puéy (14+T)—V1+2TE 7y1+2T—né tical for both parametrizations, whereag™ is in general
Y 7 K 1+2T 7(1+T)— &’ different. The candidates for the optimal learning rate take

(B9a) the form

pR=m(1+T)TELH2(1+T)2[(1+T)(1+2T)+2Te?]— (1+2T)¥(2+ T+ 0H) EH(1+2T)%(1+T)?

X[(1+T)2+Te?]—2(1+ D[ 2(1+2T)(1+T)3+ T(1+2T+2T?) 02]&+ (1+2T)%2%2 2, (B123
ot T(A+DT (1+D[2(1+T2(1+2T)—e?]— (1+2T)%4 2+ T)&, (B12b
M8 (42T 14T = (1+ T [2(1+2T) (1 +T)3+ Te2] &+ (1+2T)5%2’

V1+T
= e T (14 T) = V1+2TE ] (B129
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To decide on the correct optimal learning raf®”, one has wherep appears in the denominajoBecond, the expansion

to evaluate whether %< 7 since the solution is other- predicts an unabated increase of the optimal convergence
wise spurious due to the breakdown of the ansatzNpr | aie) oPtwith 0, which is not the case for any fini where
above 7. For the remaining valid candidates the optimal opt|ayels off and eventually decays exponentionally. This is
convergence rate is calculated. In general, one finds for giveg e tg the implicit assumption in tHe—0 expansion that

opt_ ,, opt crit opt_ . opt N
T and ¢ that 7°P'= 7 for T>T"(¢) and °"'= 5" for 0%2<—1InT, i.e., the smalll terms always dominate the so-

T<T%U(p), whereT®Y(9) is defined by °P'= 5 ™. . . - )
To make further progress in thé— oo limit, one can look '““Or.‘ over expo_nentlonal t_erms o Below, we wil ad_dr_ess
the first of the inadequacies, by analyzing fhe-0 limit,

at several limits forT and ¢. For the limitsT—o and T } o i ) ]
—0, one has to consider scaling atzsafor the biases with With the scalingo = e/\T, i.e., ¢ vanishes witT.
T that ensure that the biases remain meaningful. As dis-

cussed in Sec. Il and subsequently Sec. V C, one can adopt 3. Small-T limit and ¢
two possible interpretations of the influence of the biases that . L - .
are identical to leading orders fof— but qualitatively As in the smallT limit with ¢ finite, the slowest mode is

associated with ; and both parametrizations are identical. In

different for T—0. Theeffective biago =01+ T) keeps particular, one finds

the mean hidden unit output constant for BlIThe abscissa

(0= 0+/T) keeps the distance of the decision hyperplére
root) constant. Nmax— T
There are some further subtleties when studying various

limits. The results for first taking th&— o limit and then

the largeT limit turn out to be equivalent, to leading order in 1
K andT, to results where botfi and K go to their limits opt_ _ R )
simultaneously, i.e., taking the limK—o with T=T.K, 7 a7 2K 1+2e” T, (B14
whereT,, controls the significance betwe&hand K. How-

. 04 K+4 .
1+(1+02)T+ Q—Tz— 7(1+292)T2},

2
(B149

ever, there is a significant difference from the case where the T2
T—oo limit is taken first, which will also be studied below. APl=—2_{ (14202
For smallT on the other hand, the limitk —c« andT—0 K

are interchangeable to third order. Below, we therefore only
use those expansions that give us the more general solutions. -2

. K—1 .
(1+30%)+ \/ 51— (1+292)3’2}T].

2. Small-T limit (B140

In this limit, the slowest mode is associated with and hi h its for th del with bi
the optimal learning rate is determined b)£™, which is In this case, the results for the model without biases are

identical for both learning rate parametrizations and the leadtecovered for all orders fop =0. One can still see that the

ing terms of the interesting quantities are learning is improved for nonzero biases, but for this scaling
only by a factor of 202 and not by O(T). This expan-
Minas™= el 14 1- ﬂézh} (B133 sion holds only foro2<T due to the algebraic expansion of
K all exponentional terms.
| [(K=1)0? K-2, 4. Large-T and K limit (T=T,K)
ﬂopt: 77max_ Wee K \/f_ K QZT ’ . - .
For largeT, the two scaling ansze for ¢ are equivalent
(B13b and the eigenvalua; has the smallest order. The optimal
- v solution is therefore given by the solution @™ and the
opt_ _ 4152 iy leading terms of the relevant quantities become
A 4K[ 0°-2\——eXT
T o
1 . K-4. = m\2\Te2™? 1— <~ 02
+3 1—4g2+5T94H. (B139 = 72T K

1+4T,+4T2e¢" o2
+ T ., (B153

The result for the model without biases can be recovered to

leading order by simply settiné=0. This shows that learn-
ing speed is improved by a factor @f for nonzero(finite)

bias since the two leading terms ®fP vanish foro=0. In opt ™2 022 (B15b)

— — — e ,

this limit, the effective biap dominates the dynamics. It is 707 Tmax 2\T(1+0?)

obvious that this expansion suffers from two drawbacks.

First, the limit of zero bias cannot be taken adequately for 2 -

higher orders(this is especially obvious for higher-order opt_ TNE qo%i2 (B150)

. . . . Nw — Mmax~ - =€ )
terms in7°P, which have not been included here for brevity, v e 24T
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2 [ Te™ T2e0%4 T, K—1 -,
opt_ _ _ — + Dmax= m2K| 1- —=e 272, (B16a
S EEE) T " VT
0*+402-2
+ % ) (BlSd)
2T(1+0%) opt m2K
) ., 70 = Mmax— 21+ 09T’ (B16b)
ot 2 JTee’2  2T2e0%+2T,+02-2 @
M= Tttt T '
B15 -
(B159 o 28xp-0%2)[ K-1 B160
The comparison for zero biaseg £ 0) reveals that in this o (1+0?)T32 [ JT '
limit, the existence of biases slows down the training process
to leading order only in the case wherg= 7,,. Further-
more, this deprease is surprisingly .only aIgebrai@inThis. t 2K
can be explained by the exponential growth of the optimal 7 oP'= Dmax— o7 (B169d

learning rates matching the gradient decrease due to the satu-

ration of the error function for large. Again, this solution is
only a good approximation for finitk and T as long as
e?<InK andp?<InT. \ OPL= — ieézlz{ 1— _\/_fl eé2/21. (B166
5. Large-T limit
Unlike for small T, the learning behavior changes quali- ] ] ) o R
tatively in the T—ce limit for finite K, as indicated by nu- In this case, the optimal learning rate is independerg 0
merical solutions. Again\ controls the convergence and leading order inT. The exponentionally decreasing gradient

one finds to leading order therefore directly affects the optimal convergence rate.
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