
PHYSICAL REVIEW E MARCH 1998VOLUME 57, NUMBER 3
Role of biases in on-line learning of two-layer networks
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The influence of biases on the learning dynamics of a two-layer neural network, a normalized soft-
committee machine, is studied for on-line gradient descent learning. Within a statistical mechanics framework,
numerical studies show that the inclusion of adjustable biases dramatically alters the learning dynamics found
previously. The symmetric phase that has often been predominant in the original model all but disappears for
a nondegenerate bias task. The extended model furthermore exhibits a much richer dynamical behavior, e.g.,
attractive suboptimal symmetric phases even for realizable cases and noiseless data.@S1063-651X~98!14702-5#

PACS number~s!: 87.10.1e, 05.20.2y, 02.50.2r, 02.30.Hq
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I. INTRODUCTION

The theoretical understanding of the learning dynamics
multilayer feedforward perceptrons~MLPs! has attracted
widespread interest due to their universal approximat
ability @1# and their subsequent paramount use in pract
applications. Until recently progress has been hampered
the inability to perform the necessary~quenched! average
over the training set in order to study their performance
dependent of the particularities of an individual training s
A method to overcome this problem has been introdu
recently in @2#. It studieson-line learning in two-layer net-
works with an arbitrary number of hidden units, allowin
insight into the learning behavior of neural network mod
whose complexity is of the same order as those used in
world applications.

The on-line learning paradigm, whereby the network p
rameters are updated serially after the presentation of e
single example, allows one to avoid the difficulties of av
aging over a whole~finite! training set necessary for th
more commonly studiedbatch learning algorithm, where al
examples are used simultaneously to update the network
rameters. The network model studied, in particular, the s
committee machine@3#, consists of a single hidden laye
with adjustable input-hidden, but fixed hidden-outp
weights. The average learning dynamics of these netwo
are calculated in the thermodynamic limit of infinite inp
dimensions and in a student-teacher scenario, where astu-
dent network is presented with training examples (jm,zm).
The input vectorsjm are Gaussian random variables and
outputszm are labeled by ateachernetwork of the same
architecture but possibly with a different number of hidd
units. Although the framework allows in principle for an
on-line learning algorithm to update the student parame
gradient descent on the squared example error is stu
here.

The above learning scenario is already quite similar to
problems faced in the real world, but the approach still s
fers from several drawbacks. First, the analysis of the m
learning dynamics relies on the thermodynamic limit of in
nite input dimension—a problem that has been addresse
@4#, where finite size effects have been studied and it w
shown that the thermodynamic limit is relevant in mo
571063-651X/98/57~3!/3265~27!/$15.00
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cases. Second, examples are not resampled, describing a
nario with an unrealistically large training set compared
most real cases, where training examples are scarce
therefore repeatedly cycled over. This problem has so
proved evasive, although the issue has been considere
least for the linear perceptron@5#. Third, the hidden-output
weights are kept fixed, a constraint that has been relaxe
@6,7#, where it has been shown that the learning dynamics
usually dominated by the input-hidden weights. Fourth,
biases of the hidden units are fixed to zero, a constraint
is actually more severe than fixing the hidden-outp
weights. One can show@8# that soft-committee machines ar
universal approximators provided one allows for adjusta
biases in the hidden layer.

In this paper, we address the fourth limitation by studyi
the model of a normalized soft-committee machine with d
namic biases following the framework set out in@2#. In Sec.
II the model is defined and the calculation of the different
equations governing the training evolution is derived. In S
III numerical studies of a few typical learning scenarios a
presented to show the qualitative difference in the dynam
to the model with fixed biases, most notably the emerge
of attractive suboptimal network configurations. These a
their dependence on the teacher task, the influence of we
and bias initialization, and the choice of the learning rates
weights and biases will be studied in Sec. IV. We will al
set our results in context to previous works on weight initi
ization that devised heuristic rules. In Sec. V the optim
learning rates are calculated analytically for arbitrary n
work size and a range of teacher tasks for the converge
phase, where the student network is close to the opti
solution. In Sec. VI we will outline possible extensions
this framework and in particular briefly assess the impac
unrealizable teacher rules. This is followed by a summ
and discussion of the main results in Sec. VII.

II. DYNAMICAL EQUATIONS

The student network considered is a normalized s
committee machine ofK hidden units with adjustable biase
Each hidden uniti consists of a biasu i and a weight vector
Wi , which is connected to theN-dimensional inputsj. All
hidden units are connected to a linear output unit with ar
3265 © 1998 The American Physical Society
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3266 57ANSGAR H. L. WEST AND DAVID SAAD
trary but fixed gaing by couplings of fixed strength. Th
activation of any unit is normalized~by the inverse square
root of the number of weight connections into the unit!, al-
lowing all weights to be ofO(1)magnitude, independent o
the input dimension or the number of hidden units. Note t
this is in contrast to most other on-line learning literatu
~e.g.,@3#!; however, this makes the necessary scaling of
learning rates more explicit and leads to more elegant res
for optimal learning rates. The implemented mapping o
student with parametersV5$Wi ,u i% is therefore

s~j;V!5
g

AK
(
i 51

K

g~xi2u i !, ~1!

where xi5Wi•j/AN is the student activation andg() is a
sigmoidal transfer function. Note that although the bia
add onlyK degrees of freedom to the network, their infl
ence on the hidden unit response is still of the same orde
the complete weight vector.

The map to be learned is defined by a teacher networ
the same architecture except for a possible difference in
number of hidden unitsM and is defined by the weight vec
torsBn and biases%n (n51, . . . ,M ). Training examples are
of the form (jm,zm), where the components of the input ve
tors jm are drawn independently from a zero-mean Gauss
distribution with arbitrary variances2 and the outputs are
labeled by the teacher according to

zm5
g

AM
(
n51

M

g~yn
m2%n!, ~2!

where yn
m5Bn•jm/AN is the activation of teacher hidde

unit n. Note that we will use indicesi , j ,k,l to refer to units
in the student network andn,m for units in the teacher net
work.

In on-line learning the student parametersV are modified
to reduce the error the student makes on a presented s
example (jm,zm):

e~V,jm!5 1
2 @zm2 s~jm;V!#2. ~3!

Gradient descent on the error~3!, in this scenario commonly
identified withback-propagation@9,10#, results in updates o
the student parameters

Wi
m112Wi

m5hwd i
m jm

AN
, ~4a!

u i
m112u i

m52
hu

N
d i

m , ~4b!

with

d i
m5dmg8~xi

m2u i !5@zm2 s~jm;V!#g8~xi
m2u i !,

~4c!

whereg8 is the derivative of the activation functiong. The
two learning rates,hw for the weights andhu for the biases
~which has been rescaled explicitly by 1/N), have to be set
by the user to ensure both fast training and convergence
minimum of the generalization error.
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The above Markovian stochastic dynamics~4! are hard to
solve generally since this necessitates solving a master e
tion for the time evolution of the weight and bias probabili
distributions. Usually approximations such as small learn
rates must be employed@11# to make any progress.

However, one is ultimately interested mainly in the typ
cal performance of the student network on a randomly
lected input example given by thegeneralization error

eg~V!5^e~V,j!&j . ~5!

Since the dependence of the inputs enter only through
student and teacher activationsx5(x1 , . . . ,xK) and
y5(y1 , . . . ,yM), the probability ofj can be rewritten in
terms of a joint probability distribution in the activation
The resulting distribution is Gaussian with zero mean
^xi&j5^yn&j50 and a covariance matrixC whose compo-
nents are given by the order parameters describing the o
laps between student and teacher nodes:

^xixj&j5
s2

N
Wi•Wj[s2Qi j , ~6a!

^xiyn&j5
s2

N
Wi•Bn[s2Rin , ~6b!

^ynym&j5
s2

N
Bn•Bm[s2Tnm . ~6c!

Since also the weights solely enter through the activatio
the generalization error must be a function of these or
parameters and the biasesu i and%n only. This provides the
motivation for replacing the difference equations~4! for the
weightsWi by difference equations forQi j andRin , which
replace theWi as dynamical variables, whereas theTnm are
fixed and given by the task.

In the thermodynamic limit (N→`), the dynamical order
parametersQi j and Rin become self-averaging with respe
to the randomness in the training data; i.e., their probabi
distributions becomed functions at their mean value, and
is sufficient to study their mean evolution by averaging ov
the input distribution or rather the joint Gaussian distributi
of the activations.

Although it is known that self-averaging holds fo
overlap-type order parameter dynamics, this is not entir
self-evident for the bias dynamics and one anticipates
the updates of the biases have to be ofO(1/N), i.e., the bias
learning rate needs to be scaled by 1/N. This has been con
firmed by extensive simulations for a number of finite syst
sizesN, which conclusively show that the bias dynamics a
also self-averaging and their variances exhibit a 1/N scaling
behavior. For the details of the simulations we refer t
reader to Sec. III. In the case of adjustable hidden-out
weights, a rigorous proof~which can be extended to apply t
biases! for self-averaging for O(1/N) updates is given in
@7#.

If one further interprets the normalized example numb
a5m/N as a continuous time variable, the difference eq
tions can be conveniently rewritten as first-order coupled
ferential equations:
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dQi j

da
5hw^d ixj1d j xi&j1hw

2^d id j&j , ~7a!

dRin

da
5hw^d i yn&j , ~7b!

du i

da
52hu^d i&j . ~7c!

The scaling of the bias learning rate with 1/N may suggest
that the dynamics of the biases and the weights are m
matched in this framework for at least some of the learn
stages, leading to an optimal learning rate for the biase
infinity. This effect has already been observed in the cas
adaptive hidden-output weights@7#.

For dynamics on different time scales or different order
learning rates, it is natural to apply the method of adiaba
elimination@12# to the fast variables, here the hidden-outp
weights or biases. In this approximation, it is assumed
the fast variables driven by the large learning rates are for
to relax to an attractive fixed point of their dynamics assu
ing the slow variables, i.e., input-hidden weight order p
rameters, to be constant. This method has already been
ployed successfully for adaptive hidden-output weights@7#,
where it has been shown also that the ensuing dynamics
the order parameters are again self-averaging. One can
ther show @13# that adiabatic elimination for the hidden
output weights is not only locally optimal by minimizing th
generalization error with respect to the hidden-out
weights instantly but also globally optimal. In the case
adiabatic elimination of the bias dynamics, neither can
shown since the equilibrium values of the biases are ca
lated from a set of nonlinear equations, whereas the equ
rium of the hidden-output weights is given by a set of line
equations. Furthermore, the solution of the nonlinear se
equations does not necessarily need to be unique, a pro
that can be removed by demanding that the bias dynam
should relax dynamically to an attractive solution from th
previous equilibrium values. A detailed treatment wou
therefore go beyond the scope of this paper although we
present some results derived by this approximation wh
deemed appropriate.

Most integrations in Eqs.~7! can be performed analyti
cally for the choice of the error functiongn(x)5erf(nx/A2)
as the sigmoidal transfer function, but for single Gauss
integrals remaining forhw

2 terms and the generalization erro
For the exact form of the dynamical equations and the g
eralization error the reader is referred to Appendix A. W
only mention in passing that the variance of the input dis
bution s2 merely rescales the weight order parameters
the weight learning rates bys2. The sigmoidal gainn res-
cales the weight order parameters and weight learning
by n2 and the biases and bias learning rate byn. The output
gain g rescales all learning rates byg2. In the following
these parameters are therefore set to one without loss of
erality.

Before we will present some typical results for the tra
ing evolution by numerically integrating the differenti
equations~7!, we would like to classify the huge variety o
learning scenarios in this framework into some distinct
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neric tasks. In the original model with fixed biases@2#, it has
been found useful to classify a learning scenario accordin
the isotropy of its teacher weight vectors. Tasks with ve
similar norms of the hidden unit weight vectors exhibit
much longer training time than tasks with strongly grad
norms, which can especially be attributed to the problem
symmetry breaking in the space of the student hidden un
This may be caused somewhat by the identical output dis
butions of the individual teacher hidden units with the sa
norm. Only the differences in the initial student-teacher ov
laps Rin introduced by the random initial conditions allo
the student hidden units to distinguish between the teac
hidden units in this case. For graded teacher lengths,
hidden unit output distributions still have zero mean but d
fer in the variance and higher cumulants. In this case, as
metric initialization of the student-student overlapsQi j is
sufficient to break student node symmetry.

The extra degrees of freedom introduced by the bia
should have similar symmetry breaking effects. For simp
ity, assume for the moment that the teacher weight vec
are isotropic. In the case that all teacher biases are dege
ate (%n5%), the identical hidden unit output distribution
are shifted, with means

^g~yn2%n!&j52gS %n

A11Tnn
D . ~8!

Again, one finds that only asymmetric initial conditions
the student-teacher overlapsRin can break the symmetry. If
however, the teacher biases are nondegenerate, the te
hidden unit output distributions are all different, e.g., ha
shifted means. In this case, asymmetric initial values of
student biases are sufficient to break the student hidden
symmetry. We will later see that this symmetry breaki
effect is stronger than that introduced by graded teac
lengths. For graded teachers, the only obvious choice
‘‘degenerate’’ teacher biases is%n50. For nonzero teache
biases, the mean of the output distribution will shift acco
ing to Eq.~8!. The choice%n5% leads to student hidden un
symmetry breaking even for identical initial weight vecto
as long as the initial student biases are not identical as w
clearly a sign of ‘‘nondegenerate’’ biases when compared
isotropic teacher weights. Two other possible scaling ans¨tze
for ‘‘degenerate’’ teacher biases in the case of graded tea
lengths are

%̂5
%

A11T
, ~9a!

%̌5
%

AT
, ~9b!

where %̂ restores identical means of the individual teach
hidden unit output distributions, whereas%̌ restores identical
distances of the decision hyperplane~in the following termed
abscissa! of the sigmoidal transfer function to the origin
Neither of these ansa¨tze ~or any other ansatz inspired b
numerical results! seems to restore ‘‘degenerate’’ teacher
ases perfectly, reflecting the fact that it is impossible to p
serve output distribution symmetries for nonzero means,
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3268 57ANSGAR H. L. WEST AND DAVID SAAD
to the skewed distributions induced by the nonlinear
However, once the teacher lengths and one teacher bi
fixed, one can numerically always find a set of teacher bia
that exhibit at least a very slow learning progress. Unfor
nately, we have not been able to find a consistent ansatz
can predict these correctly, although they are in many ca
close to the values given by the ansatz~9a!. In general, we
have found this ansatz more useful in most cases and we

therefore term%̂ the effective bias.
Summarizing the above argument, it makes sense to c

sify teacher tasks according to the following two criteria:
~i! Degree of isotropy in the teacher norms. Isotrop

teacher tasks are defined by similar weight vector leng
(Tnm5Tdnm), whereas graded teacher tasks feature no
with different values. These are referred to asT i and T g,
respectively.

~ii ! Degree of degeneracy in the student biases. For
tropic teacher weights, degenerate teacher tasks are de
by similar biases (%n5%), whereas nondegenerate teach
tasks exhibit biases with distinct values. These tasks are
ferred to asTd andTn , respectively.

For graded teacher weights, degenerate biases as suc
only given for %n50, although one can also find sets
nonzero biases numerically that are approximately ‘‘deg
erate.’’

III. TYPICAL EVOLUTION
OF THE DYNAMICAL EQUATIONS

The differential equations can only be solved accurat
in moderate times for smaller student networks (K<5) but
any teacher sizeM due to the required numerical integr
tions. For small learning rates, wherehw

2 terms can be ne
glected, the differential equations can be solved for anyK.
For the remainder of the paper, we would like to focus on
influence of different bias scenarios and the influence of
learning rates. We therefore restrict ourselves otherw
mainly to small realizable networks (K5M with K52,3)
and uncorrelated isotropic teacher weight vectors of arbitr
length (Tnm5Tdnm).

The dynamical evolution of the overlapsQi j , Rin and the
biasesu i follows from integrating the equations of motio
~7! from initial conditions determined by the~random! ini-
tialization of the student weightsWi and biasesu i . For ran-
dom initialization the resulting normsQii of the student vec-
tor will be O(1), while the overlapsQi j between different
student vectors, and student-teacher vectorsRin will be only
O(1/AN). A random initialization of the weights and biase
can therefore be simulated by initializing the normsQii , the
biasesu i , and the normalized overlapsQ̂i j 5Qi j /AQii Qj j

and R̂in5Rin /AQii Tnn from uniform distributions in the
@0,1#, @21,1#, and @210212,10212# intervals, respectively
We find that the results of the numerical integration are s
sitive to these random initial values, which has not been
case to this extent for fixed biases. To study the effec
different weight initialization, we have fixed the initial va
ues of the student-student overlapsQi j and biasesu i for
some of the numerical examples, as these can be man
lated freely in any learning scenario. The initial stude
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teacher overlapsRin are always randomized as suggest
above.

In our first example~Fig. 1!, we demonstrate the potentia
influence of the adjustable biases in the learning dynamic
the soft-committee machine model, by comparing two ty
cal realizable learning tasks (K5M52) with isotropic
teacher weight vectorsT i (Tnm5dnm). The student param
eters denoted by * represent a learning scenario in the o
nal model, where both student and teacher lack biases, i
u i50 and %n50. The other scenarios feature student n
works from the extended model, i.e., with adjustable bias
They are trained by an isotropic teacher task with small n
degenerate biases (%1,2570.1). For both scenarios, th
learning rate and the initial conditions were judicious

chosen to be h052.0, Q1150.1, Q2250.2, R̂in5Q̂12

5U@210212,10212# with u150.0 andu250.5 for the stu-
dent with adjustable biases.

In both cases, the student weight vectors@Fig. 1~a!# are
drawn quickly from their initial values into a suboptima
symmetric phase, characterized by the lack of specializa
of the student hidden units on a particular teacher hid
unit, as can be depicted from the similar values ofRin in Fig.
1~b!. This symmetry is broken almost immediately in th
learning scenario with adjustable student biases and no
generate teacher biases. The student converges quickly t
optimal solution, characterized by the evolution of the ov
lap matricesQ,R and biasesu @see Fig. 1~c!# to their optimal
valuesT and% ~up to the permutation symmetry due to th
arbitrary labeling of the student nodes!. Likewise, the gener-
alization erroreg decays to zero in Fig. 1~d!. The student
with fixed biases is trapped for most of its training time
the symmetric phase before it converges eventually.

Before analyzing the differences between the origi
soft-committee and the extended model further, we wo
like to briefly assess the influence of finite input dimensionN
on the dynamics, especially in order to confirm that the d
namic variables are self-averaging. In Fig. 1 we theref
also compare the theoretical evolution of the overlaps,
biases, and the generalization error with the simulation
sults for input dimensionsN510, . . .,500, for the above stu
dent and teacher scenario with adjustable biases. The in
ization for the simulations is identical to the theo
for the student norms and biases, but the overlaps w
scaled appropriately with input dimension (R̂in5Q̂12
5U@2N21/2,N21/2#).

Since the learning trajectory for finiteN is stochastic,
there is a probability for a student node permutation in
specialization process leading to multimodal probability d
tributions of the dynamic variables. To be able to calcul
meaningful mean trajectories and variances, student no
were therefore relabeleda posteriori. However, this permu-
tation probability decreases in the simulations with 1/N3,
leading to a well defined deterministic behavior in the th
modynamic limit, i.e., the probability distributions of the dy
namic variables become asymptotically unimodal. The
sulting mean trajectories of the dynamic variables are sho
for two input dimensions (N510,100) in Figs. 1~a!–1~c!,
where some of the order parameters (Q22, R22, and R21)
were omitted as they have very similar values to oth
(Q11, R11, andR12) due to the symmetry in the learned tas
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FIG. 1. The dynamical evolution of~a! the student-student overlapsQi j and ~b! the student-teacher overlapsRin as a function of the
normalized example numbera is compared for two student-teacher scenarios. One student network~denoted by *) has fixed zero biases an
is trained using examples generated by a biasless teacher network. Other student networks have adjustable biases and are learni
a teacher task with nonzero biases. The influence of the symmetry in the initialization of the biases on the dynamics is shown f~c! the
student biasesu i and~d! the generalization erroreg . The initial value ofu150 is kept for all runs, butu2 varies and is given in brackets i
the legends. Finite-size simulations for input dimensionsN510, . . . ,500show that the dynamical variables are self-averaging. For all o
parameters and the biases the mean trajectories forN510 andN5100 are shown for the relevant order parameters$see the legends, fo
biases:u1 @N510 (s), N5100 (L)#; u2 @N510 (n), N5100 (h)#%. For the generalization error we show the results forN5200 and
N5500 for comparison.
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The size of the symbols is only a guide to the eye, bu
generally much larger than the standard deviation in
mean. Even for the smallest input dimension ofN510, the
agreement of the simulations with the theoretical predicti
is qualitatively good but the trajectories exhibit a systema
shift to smallera values. ForN5100 the finite size effects
on the mean trajectory are already very small. For comp
son, the simulated values of the generalization error in F
1~d! for larger input dimensions (N5200,500) are already
virtually indistinguishable from the theoretical prediction
In general, one finds that the deviations of the mean fr
their thermodynamic predictions and the variances of the
namical fluctuations scale with 1/N as expected@4#.

One of the most striking differences between the so
committee machine with and without biases is the length
the symmetric phase for nondegenerate teacher biases.
the training speed can be closely linked to existent or bro
symmetries in either the underlying teacher rule and/or
input distribution has already been observed in much sim
systems such as perceptrons and a variety of learning
narios: supervised and unsupervised learning or batch
on-line learning~see, e.g.,@14–17#!. In the soft-committee
machine the length of the symmetric phase has also b
shown to be reduced significantly for graded teachers@2#.

However, for isotropic teacher scenarios, the symme
phase dominates the overall training time of the model w
s
e
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f
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fixed biases in backpropagation training even for an o
mized learning rate@18,19#, as the training time grows lin-
early with more thanK2 in the symmetric phase and onl
with K in the convergence phase. For small learning rates
trapping time is furthermore linearly extended withh0. The
influence of the initial conditions is only logarithmic throug
the differences in the initial student-teacher overlapsRin

@20#, which are typically of O(1/AN) and cannot be influ-
enced in real scenarios withouta priori knowledge. The ini-
tialization of the biases, however, can be controlled by
user and its influence on the learning dynamics is shown
Figs. 1~c! and 1~d! for the biases and the generalization err
respectively. For initially identical biases (u15u250), the
evolution of the order parameters and hence the genera
tion error is almost indistinguishable from the fixed bias
case. A breaking of this symmetry leads to a decrease of
symmetric phase linear in ln(uu12u2u) until it has all but dis-
appeared. The dynamics are again slowed down for v
large initialization of the biases@see Fig. 1~d!#, where the
biases have to be modified significantly before reaching th
optimal values.

The influence of bias dynamics in the case of degene
teacher biases is demonstrated in Fig. 2; here we show
evolution of the overlaps, the biases, and the generaliza
error from random initial conditions forK53 and a common
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FIG. 2. The dynamical evolution of the student-student overlapsQi j ~a!, the student-teacher overlapsRin ~b!, the student biasesu i ~c!,
and the generalization erroreg ~d! as a function of the normalized example numbera is shown for a realizable scenarioK5M53 and
h05hu5hw52. The teacher tasksT d

i large degree of symmetry (Tnm5dnm and %n51) is responsible for the very slow specializatio
process that takes place in two identifiable stages. Training time is shortened considerably when the teacher vector isotrop
degeneracy is broken.
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learning rate (h05hu5hw52) for a realizable task (M53)
with isotropic weight vectors (Tnm5dnm) and degenerate bu
nonzero biases (%n51). As before the student-student ove
laps@Fig. 2~a!# are quickly drawn into a symmetric subspac
characterized by similar overlapsRin @Fig. 2~b!# between
each student node and all teacher nodes. The student b
@Fig. 2~c!# take values that are symmetrically grouped arou
the true degenerate teacher biases. The breaking of the
metry occurs in two stages. First, the third hidden un
whose single student bias is located closest to the true
value, begins to specialize on the third teacher unit. T
other two student units decorrelate from the third and
associated teacher unit, but remain strongly correlated w
each other and the two other teacher units. The two bia
keep their symmetry around the true teacher bias va
These symmetries are eventually also broken and the stu
finally converges to the optimal solution. Although the ev
lution is therefore still characterized by three learning stag
transient to the symmetric phase, breaking of the symme
and final convergence, similar to the evolution of the mo
with fixed biases, the extra degrees of freedom introduced
the biases enrich the dynamical evolution considerably.

To contrast the training behavior in this very symmet
task Td

i with the three other generic tasks that exhibit le
symmetry, we introduce small deviations from the origin
symmetry by choosingTnm5(110.1n)dnm instead of
Tnm5dnm for teacher overlaps and/or%n50.810.1n instead
of %n51 for the biases. These deviations have a dram
effect on the evolution of the generalization error in F
,
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2~d!. The taskT d
i has by far the slowest training behavio

with the sequential specialization process already descr
above for the order parameters. This is followed by the
proximation to the taskT d

g , which also features a sequenti
breaking of the symmetry but on a much shorter time sc
The fastest training times are exhibited for tasksT n

g andT n
i

with no measurable speed up for the graded task, sugge
that nondegenerate biases affect the breaking of node s
metry more significantly than graded weight vectors. T
strong symmetry breaking effect of the biases is argua
due to a steep minimum in the generalization error surf
along the direction of the biases caused by the shift of
means of the individual hidden unit output distributions. Th
picture can be confirmed by the fact that the trajectories
the biases do not cross, i.e., the rank ordering accordin
the value of the bias is preserved at all times, whereas
ordering according to the norms is not. We have found t
to be true for a range of other learning scenarios stud
including larger networks and more strongly graded teach
provided that the biases were not initialized highly sy
metrically. This seems to promote initialization schem
where the biases of the student hidden units are sp
evenly across the input domain as has been suggested p
ously on a heuristic basis@21#.

For the cases of degenerate teacher biases, the groupi
student biases found above is typical for all cases stud
For an even number of degenerate teacher biases, the st
units combine in pairs. Each pair is characterized by its t
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biases having the same distance to the true teacher bias
with opposite sign and by its weight vectors being high
correlated. For an odd degeneracy, as above, the behav
similar but for a single remaining student bias, which is s
bilized around the true teacher bias value. The breaking
the symmetries in these cases can take a lot longer tha
fixed biases and can be extremely complicated. It is of
broken in stages as in the example given above, but can
occur simultaneously. We also find a strong influence of
training outcome on the initial conditions and the learni
rate chosen, in some cases not all symmetries are broken
the student remains trapped in a suboptimal configurat
i.e., some of the symmetric fixed points are attractive.

To illustrate this point, the dynamics of the student bia
u i are shown in Fig. 3 forK5M52, h051 and random
initial conditions, and an isotropic teacher with degener
biases (%n50). The student was initialized identically fo
the different runs~i.e., the same seed was used for the r
dom number generator!, but for a change in the range of th
random initialization of the biases (U@2b,b#). We find that
the student progress is inversely related to the magnitud
the bias initialization until a critical value ofb is reached,
where the student fails to converge at all. It remains in
suboptimal phase characterized by biases of the same
magnitude but opposite sign and highly positively correla
weight vectors that have identical overlap with all respect
teacher vectors. This behavior may be explained by the
that the generalization error decreases with increasing m
nitude of the symmetric bias arrangement in the symme
phase, suggesting the possibility of a local minimum in
generalization error surface. This may cause the dyna
competition between the specialization process of the stu
hidden units and the increase in magnitude of the bia
observed in Fig. 3, where the basin of attraction is de
mined by the initial conditions and the learning rates. Fas
convergence for this scenario is achieved forb50 and a
reasonable bias initialization strategy seems therefore alm
opposite to the above case of nondegenerate teacher bi

In order to devise an initialization strategy that can co
well with all learning scenarios, we explore the influence

FIG. 3. The dynamical evolution of the biasesu i for a student
imitating an isotropic teacher with zero biases reveals symme
dynamics foru1 andu2. The student was randomly initialized iden
tically for the different runs, but for a change in the range of
random initialization of the biases (U@2b,b#), with the value ofb
given in the legend. Above a critical value ofb the student remains
trapped in a suboptimal phase.
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the initial conditions and the learning rate on the learn
process more systematically in the following section.

IV. ATTRACTIVE FIXED POINTS

Although attractive symmetric fixed points have be
found also for the soft-committee machine model with fix
biases@20#, these needed careful preparation of the init
conditions and were restricted to overrealizable cases. In
case of adaptive biases, one finds a multitude of attrac
suboptimal fixed points for realizable cases with, in so
cases, large basins of attraction. They exist not only in ca
where both teacher weight vectors are isotropic and the
ases degenerate but also for graded teachers and nond
erate biases, although in these cases, the basins of attra
tend to shrink with increasing task asymmetry. In real wo
problems, the problem of poor local minima and the infl
ence of the initial conditions on these is well known f
backpropagation training. One can find numerous exam
in the literature~e.g., @22,23#! that produce training erro
dynamics that look very similar to the evolution of the ge
eralization error found in this work.

Subsequently, many algorithms~see, e.g.,@24# and refer-
ences therein! have been proposed that aim at finding go
initial conditions. However, we are aware only of tw
@21,22#, which do not rely on information extracted from a
a priori known training set and are therefore the only on
applicable in the framework studied. Below, we will ther
fore try to gain a qualitative understanding of how the init
conditions and the learning rates can be chosen to avoid
coming attracted to suboptimal network solutions. Our fin
ings are then compared to the heuristically based sugges
in @21,22#.

Due to the quadratic increase in the number of dynam
variables with the system sizeK, we restrict ourselves to the
smallest network sizeK52, although we have verified th
validity of the drawn conclusions for larger networks. In pa
ticular, three elements that influence the size of the basin
attraction for given initial conditions were investigated: t
task asymmetry~in terms of the teacher lengths and biase!,
the initial conditions, and the learning rates.

Since the initialization space and hence the basins of
traction are still of high dimensionality, we have restrict
ourselves to one-dimensional slices in one of the biases,u2,
parametrized by a further variable. The remaining variab
of the student were chosen to behu5hw52.0, Q1150.1,
Q2250.2, u150.0, andR̂in5Q̂125U@210212,10212# ~with
a fixed random seed!. The teacher task was usually chosen
be of the formT n

i with Tnm5dnm and %n50, if not other-
wise stated. The convergence timeac was defined as the
example number at which the generalization error has
cayed to a small value, here judiciously chosen to be 1028

requiring the student to have broken the symmetries
weight space successfully. The convergence time diverge
the case that the student is attracted to a suboptimal fi
point.

A. Task asymmetry

In Figs. 4–6 we compare the influence of the initializati
of u2 on the convergence timeac and the resulting basin o

ic
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3272 57ANSGAR H. L. WEST AND DAVID SAAD
attraction for three different teacher tasks of the formT d
i , T n

i

andT d
g , where some sort of asymmetry was applied gra

ally to the original teacher task (Tnm5dnm and%n50).
In the case of degenerate teacher biasesT d

i ~Fig. 4! for
which the biases were chosen to be%n5%, the convergence
time diverges beyond some critical absolute valuesu c

6 of u2

and the basin of attraction to the optimal solution is restric
to 2u crit

2 ,u2,u crit
1 . For small % this basin is symmetric

(u crit
2 5u crit

1 ) and almost constant in size, whereas for lar
%, the basin is skewed and increases in size. The fas
convergence is always achieved foru25u150, i.e., when
the teacher task degeneracy is reflected in the bias initia
tion. This effect becomes increasingly more pronounced
larger teacher bias values%, which also generally show
shorter convergence times. This effect may be explained
the fact that for small% most examples are drawn from th
region where the sigmoidal transfer function is linear, ma
ing the symmetry breaking process more difficult.

This behavior is to be contrasted to the case of nondeg
erate teacher bias tasksT n

i characterized by%n56% shown
in Fig. 5. Here, one finds that the basin of attraction to
optimal solution already increases substantially for v
small values of%, although we still find that the student
drawn into a suboptimal solution for large enough initialu2.
However, above a certain value in the teacher bias asym
try %crit'0.174, the suboptimal solution ceases to be an
tractive fixed point, although the dynamics can still
slowed down considerably due to the influence of the sy
metric fixed point. Above%crit and very large initial values
u2, one finds that the convergence time increases expo
tionally with u2, arguably due to the fact that the stude
hidden unit is initially highly saturated and the gradient d
creases exponentionally.

We further find that the basin of attraction is always p
fectly symmetric, unlike in the degenerate case since the
den unit symmetry is broken by the biases and not
weights. This also explains the sharp peak in the conv
gence time for initial values aroundu250 with

FIG. 4. The convergence timeac(u2) ~see the text! is shown for
several values of the common teacher bias for the degene
teacher bias taskT d

i (%n5%). ac diverges for large enough initia
magnitude ofu2 for all values of% ~see the legend!. For increasing
% the basin of attraction to the optimal solution becomes asymm
ric and larger.
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ac~u 28!2ac~u2!} lnS uu2u

uu 28u
D ~10!

for small initial valuesu 28 andu2, as already shown in Fig
1~d!. Equation~10! holds exactly in the limitu2→0 only for
Rin50, in which case the convergence time diverges as o
the biases can break the symmetry. Otherwise, the con
gence time is affected by the specialization process trigge
by the asymmetric initial conditions inRin . This is also true
for the other laws@Eqs.~11! and ~12!# found below.

Similarly, the shortest possible convergence time
creases initially with increasing task asymmetry according

a c
opt~%8!2a c

opt~% !} lnS %

%8
D , ~11!

te

t-

FIG. 5. The convergence timeac(u2) is shown in terms of the
asymmetry in the teacher biasesT d

i (%n56%). These tasks also
exhibit an attractive suboptimal fixed point for small%, but with a
smaller basin of attraction. Above a critical value the suboptim
fixed point becomes unstable although it still can influence
learning process considerably. For very large initial valuesu2 ~and
large enough%), the learning process is slowed down exponentio
ally, but the student is still able to converge to the optimal solut
eventually.

FIG. 6. The convergence timeac is shown as a function of
difference in the teacher lengthsdT5T222T11~see the legend!. ac

is also reduced as for the asymmetric bias case~Fig. 5!, but the
basin of attraction does not grow as significantly for the tasksT d

g .
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and the minimum becomes sharper in terms ofu2 for large
%. This minimum defines the optimal initial valueu 2

opt(%),
which increases as expected with increasing%, but is always
considerably larger than%. This effect is especially remark
able when taking the initial student norm into account, co
paring the actual effective bias or alternatively the absc
of the hidden units~i.e., %/A11T and u2 /A11Q22 or
%/AT andu2 /AQ22).

The graded teacher taskT d
g also speeds up the breaking

hidden unit symmetry as shown in Fig. 6 and reduces
optimal convergence timea c

opt substantially. The difference
in convergence time due to a small task asymmetry is gi
in terms of the teacher length differencedT5T222T11 by

a c
opt~dT8!2a c

opt~dT!} lnS dT

dT8
D . ~12!

The total reduction inac for a given asymmetry is smalle
when compared toT n

i . This confirms the observation mad
in Sec. III that the biases have a stronger symmetry brea
effect than the weights. This is also mirrored in the basin
attraction increase, which is not as substantial as in the
of asymmetric biases, and the critical biasucrit follows ap-
proximatelyucrit(dT)2ucrit(0)}dT0.141(3).

We have found qualitatively similar results for larger ne
works, where the basin of attraction to the optimal solut
also grows with the teacher task asymmetry. However,
also finds that the range of initial conditions attracted to
optimal solution shrinks with network size for a give
teacher task asymmetry~e.g., %n2%n2150.1) and the num-
ber of suboptimal attractive fixed points grows significant
We have found this to be true especially where the asym
try is purely in the weight vectors.

B. The initial conditions

Since the largest basin of attraction to the suboptim
fixed point is found for learning scenarios with degener
teacher biases, we will investigate the influence of the ot
initial conditions and the learning rates for the ta
Tnm5dnm and%n50.

In Fig. 7 it is shown that the influence of the initializatio
of the first biasu1 consists almost exclusively of a linea
shift in the range of initialu2 values that lead to convergenc

FIG. 7. The basin of attraction for initialu2, shown for several
values ofu1, depends almost solely on the differenceu22u1.
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of the training. In particular, we find that the results beco
invariant under the transformationu 285u220.9745(9)3u1,
i.e., the basin of attraction depends almost solely on the
ferenceu22u1. This is somewhat surprising since one m
have assumed that the basin of attraction should depen
the individual abscissas or the effective biases of the stud

In Fig. 8 the basin of attraction for different initial stude
lengths is shown. All the initial student-student overla
were magnified from their original values@25# by factorsM
given in the legend. The influence of the student length
clearly twofold. First, the basin of attraction inu2 grows
approximately with 0.068(5)10.331(6)3M0.445(8), making
the training process less sensitive to the initial bias valu
However, this growth translates into a decrease of the crit
abscissa sinceQ grows withM , which could be interpreted
as another sign that the raw initial values are the cru
parameters and not the abscissas. Second, the optimal
vergence time is slowed down slightly for increasingM and
one finds approximatelya c

opt5643(1)112(1)3M0.34(3).
Similarly, in Fig. 9, we assess the influence of finite si

effects on the basin of attraction through the typical init
normalized student-teacher overlapsr̂ 5 O(1/AN) ~ignoring
other stochastic finite size effects!. As predicted in@20#, the

FIG. 8. The basin of attraction for initialu2 shown for several
magnification factorsM of the initial student-student overlapsQi j

~see the legend! increases with the size of these initial values.

FIG. 9. Although the basin of attraction for initialu2 grows with

the range of initial student-teacher overlapsr̂ ~for values see the
legend! the dynamics still get trapped in a suboptimal configurat

for large enoughu2. Sincer̂;1/AN, this gives some indication o
how finite size systems may behave.
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3274 57ANSGAR H. L. WEST AND DAVID SAAD
optimal convergence time is reduced linearly in lnr̂)
@ac5187.70(7)216.923(4)3 ln(r̂)#. More relevant for the
purpose of this work is the increase in the basin of attrac
to the optimal solution with the critical initial bia
ucrit50.370(1)10.507(5)3 r̂ 0.103(1).

The results found forK52 again carry over qualitatively
to larger networks with the decrease in the basin of attrac
with network size as already mentioned in Sec. IV A. Es
cially interesting in this respect is that, even forK52, the
maximal initial abscissas that guarantee convergence for
case of degenerate teacher biases are generally smaller
the size of the input domain, a tendency that becomes m
emphasized for larger networks. These results therefore
tradict heuristics presented in@21#, where it has been sug
gested to spread the abscissas across the input doma
@21#, it also has been assumed implicitly that the abscis
are the relevant quantities, whereas our work indicates
the raw bias values are more important in determining
basin of attraction.

C. The learning rates

Beside the initial conditions and the teacher task to
learned, the learning rates used also strongly influence
learning process. In Fig. 10 the convergence time as a fu
tion of u2 is shown for a range of common learning ratesh0.
For convenience, the convergence time has been norma
with 1/h0. One finds that the convergence time diverges
all learning rates, above a critical initial value ofu2. For
increasing learning rates, this transition first becomes sha
and occurs at smalleru2 until the learning rate is reached th
provides the fastest convergence to the optimal solution
smallu2, beyond which the basin of attraction widens aga

The increase of the basin of attraction has been postul
in @22#, however, the functional relationship give
(h0,Qii 1u i

2) cannot be supported by our findings. It is n
only quantitatively incorrect, it also fails to predict a fini
boundary for an infinitesimal small learning rate. This wo
further does not account for interaction between the hid
units and the different roles of weights and biases in de
mining the basin of attraction~see Sec. IV B!.

In Figs. 11 and 12 it is shown that it can be beneficial

FIG. 10. The normalized convergence timea ĉ[h0ac is shown
as a function of the initialization ofu2 for various learning ratesh0

~see the legend,h 0
250 represents the dynamics neglectingh 0

2

terms!.
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separate the weight and bias learning rates. In Fig. 11
normalized convergence timea ĉ(u2) is plotted for fixed bias
learning rate (hu52) but allowing for variations in the
weight learning ratehw . One can readily see that the bas
of attraction increases when the weight and bias learn
rates are well separated. This advantage, however, is rela
as a very small weight learning rate increases the con
gence time linearly.

Similarly in Fig. 12, the convergence timeac(u2) is
shown for fixed weight learning rate (hw52) but variable
bias learning ratehu . Again, the basin of attraction is clearl
enlarged when separating the time scale for the training
biases and weights. Whereas training is slowed down
small bias learning rates, this is not the case for largehu
where the basin of attraction increases to very large value
is therefore more reasonable to achieve the desirable se
tion of the learning rates by choosing a large bias learn
rate. In fact, a maximal bias learning rate does not exis
this scenario, suggesting a possible different scaling. It
ther poses the question of whether in this case the basi

FIG. 11. The normalized convergence time as a function ofu2 is
shown for various weight learning rateshw ~see the legend! with the
bias learning rate fixed athu52. For very small weight learning
rate the basin of attraction increases quickly~for hw50.1 the train-
ing diverges forucrit55.415).

FIG. 12. The convergence timeac(u2) is plotted for various
bias learning rateshu ~see the legend! with the weight learning rate
fixed athw52. For very large bias learning rate the basin of attra
tion extends to very large values, e.g., toucrit55.735 forhu560,
although the training is still eventually slowed down exponentio
ally for very large initial values ofu2.
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attraction encompasses the whole space of initial conditio
Unfortunately, a closer inspection using larger netwo

and other learning tasks reveals several limitations of la
bias learning rates and adiabatic elimination. First of all,
use of adiabatic elimination for very smalla leads to ex-
tremely large initial equilibrium values of opposing signs f
the biases, effectively canceling the outputs of pairs of h
den units. This effect can be attributed to the initial lack
information about the teacher, reflected by the inheren
small values of the student-teacher overlapsRin favoring the
hidden units to be switched off effectively. Consequen
the progress of the student weights is inhibited to such
extent that training does not converge in finite time for
practical purposes@26#. Similarly, very large but finite bias
learning rates also slow down the training time due to
biases blowing up in the very early stages of learning. I
therefore necessary to restrict the bias learning rate for v
small a, i.e., for the initial transient, to a finite value. It i
unclear whether this is also a problem for finite size syste
where adiabatic elimination corresponds to a bias learn
rate of O(1) instead ofO(1/N).

Even when adiabatic elimination or a very large b
learning rate is only triggered once training has reached
stable symmetric plateau, their usefulness in terms of b
of attraction enlargement is, in general, not pronounced
larger networks. In fact, using large bias learning rates
actually decrease the basin of attraction to the optimal
work parameters especially in degenerate bias tasks with
tropic weight vectors, e.g., training with a bias learning r
abovehu53 in the learning scenario of Fig. 2 converges
a suboptimal fixed point.

However, once all hidden unit symmetries have been b
ken, adiabatic elimination or a very large bias learning r
can be employed in all circumstances and generally resul
slightly faster training when compared to using a finite lea
ing rate. This will be investigated analytically in more det
in the following section.

V. ANALYSIS OF THE CONVERGENCE PHASE

For the soft-committee machine model with fixed ze
biases, realizable learning scenario (K5M ), and isotropic
teachers (Tnm5Tdnm), the order parameter space could
very well characterized throughout the learning process
similar diagonal and off-diagonal elements of the over
matricesQ andR, simplifying the linear analysis around th
symmetric and zero generalization error fixed points@18#
considerably since the number of dynamic variables could
reduced to four.

For the model with dynamic biases this dimensiona
reduction for the equivalent teacher task with isotro
weights and degenerate biases is in general not a good
proximation as can be clearly seen in Fig. 2. However, if
student biases are initialized quite symmetrically, we find
ansatz

Qi j 5Qd i j 1C~12d i j !, ~13a!

Rin5Rd in1S~12d in!, ~13b!

u i5u ~13c!
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to be justified for the student-student overlaps~apart from a
relabeling of the student nodes!, student-teacher overlaps
and the student biases in the convergence phase.

The reduction of the number of order parameters fr
O(K2) to just five allows us to analyze the learning dyna
ics in the convergence phase as a function of the netw
sizeK, the length of the teacher hidden unitsT, the size of
the teacher biases%, and the user adjustable learning rat
h0 andhu .

A. The eigenvalue spectrum

In order to predict the optimal learning rates for the co
vergence phase, we linearize the equations of motion~A4! in
$R,Q,C,S,u% around the zero generalization error fixe
point R* 5Q* 5T, S* 5C* 50, andu* 5% ~see Appendix
B!. The matrixM of the resulting system of five couple
linear differential equations inr 5T2R, q5T2Q, s5S,
c5C, andq5%2u has two sets of eigenvalues.

Two eigenvalues (l1,2) are the solutions to a quadrat
equation~B3! consisting of the same matrix elements ofM
as in the fixed bias case and are therefore independent o
bias learning ratehu . These eigenvalues are nonlinear in t
learning ratehw and l1 becomes positive for large enoug
hw . The other three eigenvalues (l3,4,5) are the solution to a
cubic equation~B4!. These eigenvalues depend on bo
learning rates and are negative for all values ofhw andhu .
These eigenvalues are minimized with respect tohu in the
limit hu→`, i.e., the optimal bias learning rate in the co
vergence phase is at infinity~for a more detailed discussio
see Appendix B!. Below, we will therefore restrict ourselve
to the study of two learning rate parametrizations: a comm
learning rateh05hw5hu or the weight learning ratehw
with the bias learning ratehu eliminated by taking the limit
hu→`. We will adopt the convention to use a generic lea
ing rateh and eigenvaluesl whenever a statement is appl
cable for both parametrizations, whereas parametrization
pendent symbols denoted by superscripts or subscripts
used otherwise.

The behavior of the eigenvalues described above
graphically illustrated for both learning rate parametrizatio
in Fig. 13~a! for K55, T51, and%51. Within these pa-
rametrizations, the eigenvaluesl3,4,(5) are linear in h,
whereasl1,2 have higher orders inh. l1,2 are identical for
both parametrizations since they are functions ofhw only,
whereas the slopes ofl3,4 are clearly minimized for the pa
rametrizationhu→` (l 5

w is omitted sincel5→2` for hu

→`). One can further distinguish between two slow mod
associated with eigenvaluesl1 andl3 and three fast mode
associated with eigenvaluesl2 andl4,5, which are negative
for all learning rates and whose magnitude is significan
larger in the region of interestingh. The fast modes deca
quickly and their influence on the long-time dynamics is ne
ligible. The dependence of the two relevant eigenvaluesl1
andl3 on h is more closely illustrated in Fig. 13~b! in the
same learning scenario. As mentioned, the eigenvaluel3 is
negative and linear inh, whereas the eigenvaluel1 is a
nonlinear function ofh and negative for smallh. For large
h, l1 becomes positive and training does not converge to
optimal solution defining the maximum learning ratehmax as
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FIG. 13. ~a! The eigenvaluesl i
0 andl i

w are shown as a function of the applicable learning rateh for K55, T51, and%51 for the cases
hu5hw5h0 andhu→`, respectively.~b! The two relevant eigenvalues~see the text! l1 andl3 are magnified for the same scenario. F
comparison we plot 2l3 and find that the optimal learning ratehopt is given by the minimum ofl1 for hu→` but by the root ofl122l3

for hu5hw .
s

lue
d
o

ro
ro

t

-
f

is

ade:

h

nd
he

-

y

di-
nce

a

g

l1(hmax)50. For allh,hmax the generalization error decay
exponentionally toe g* 50.

B. The optimal dynamics

In order to identify the optimal convergence eigenva
lopt, which is the eigenvalue associated with the slowest
cay mode, we expand the generalization error to second
der in r , q, s, c, andq ~B8!. Numerically, we find that the
eigenvector associated with the linear eigenvaluel3 is or-
thogonal to the first-order terms in the generalization er
and can therefore not contribute to their decay, but cont
only the decay of a second-order term with 2l3.

The learning ratehopt, which provides the fastes
asymptotic decay ratelopt of the generalization error, is
therefore given by the condition

lopt5umin
h

@max~l1,2l3!#u. ~14!

This means eitherl1(h r
opt)52l3(h r

opt) or minh(l1) if
l1(h m

opt).2l3(h m
opt), whereh m

opt is the learning rate at the
minimum of l1. In Fig. 13~b! one finds that for this particu
lar case the fastest decay is achieved at the minimum ol1
for hu→` but at the root ofl122l3 for hu5hw .

Unfortunately, the calculation oflopt ~andh0 or hw) via
Eq. ~14! and the determination of the kind of optimum
e-
r-

r
ls

analytically unfeasible for generalK, T, and%. However, for
some special cases further analytical progress can be m
K→`, T→`, andT→0. For theT limits, it is necessary to
adopt a scaling for the teacher bias%, and we have used bot
natural scaling ansa¨tze@see Eq.~9! in Sec. II#. These analytic
limits are studied in detail in Secs. 1–5 in Appendix B a
the main results will be referred to in the discussion of t
appropriate figures and are summarized in Table I.

1. The critical teacher length Tcrit

We find that in the small-T limit, the optimum is always
given by the minimum ofl1 and both learning rate param
etrizations are identical, whereas for the large-T limit, the
root solution (l152l3) applies, resulting in a faster deca
for hu→`. For finiteT there exists aTcrit(K,%), which de-
pends on the kind of learning rate parametrization and
vides these two solution regimes. The functional depende
of T 0

crit and T w
crit is graphically illustrated in Fig. 14 as

function of % for a range ofK values including theK→`
limit, where it is implicitly assumed that exp%2!K.

In Fig. 14~a! T 0
crit decreases monotonically with%. The

K→` limit exhibits a finite limit (T 0
crit'0.21) for %→`,

but acquires a power-law decayT 0
crit}%22 for all finite K

@see inset of Fig. 14~a!#. For T.T 0
crit(K,0)'1.278, the root

solution applies for all% due to monotonously decreasin
T 0

crit , whereas for all otherT values the solution type
-law

tive
TABLE I. For T→0 and T→` the optimized dynamics in the convergence phase show power
behavior to leading order~for more detail including higher-order terms consult Appendix B! for both learning

rate parametrizationshu5hw andhu→`. The table shows the power laws and the%̂5%/A11T dependence
of the optimal learning parametersh w

opt andh 0
opt , their respective optimal convergence eigenvaluel w

opt and
l 0

opt , and the normalized difference between maximal and optimal learning rateDh max
opt 5(hmax2hopt)/hopt.

Note that for theT→0 limit both learning rate parametrizations are identical. In this limit, an alterna

scaling for the biases (%̌5%/AT) has been investigated as well.

T→0 T→` (K finite! T→` @TK215 O(1)#

hu>hw (%̌) hu>hw (%̂) hu5hw hu→` hu5hw hu→`

hopt p pe%̂2 pA2K pA2K T1/2e%̂2/2 T1/2e%̂2/2

Dh max
opt

TA112%̌2 A%̂2T @T(11%̂2)#21 T21
@T(11%̂2)#21 T21

lopt
T2K21(112%̌2) TK21%̂2 T23/2(11%̂2)21e2%̂2/2 T23/2e%̂2/2 @TK(11%̂2)#21 (TK)21
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FIG. 14. The critical teacher lengthsT 0
crit ~a! for hu5hw andT w

crit ~b! for hu→` as a function of%̂ for severalK values given in the
legend (̀ represents theK→` limit !. Tcrit defines the transition between the optimal convergence given by the minimum ofl1 and by the

root of l122l3. Notice that for givenT, the solution type can change for increasing%̂ at most once forhu5hw , whereas it can change u

to three times forhu→`. The inset in~a! shows the power-law decay ofT 0
crit}%̂22.
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changes from the minimum to the root above aT- and
K-dependent value of%. The dependence ofT 0

crit on K is
relatively weak and varies with%. For small% (%&0.45),
T 0

crit increases with K, whereas for medium %
(0.45&%&1.64), T 0

crit decreases withK. Above %*1.64,
T 0

crit increases again withK and reaches the qualitativel
different solution for finite and infiniteK.

On the other hand,T w
crit does not behave monotonically i

% ~with the exception ofK52) as shown in Fig. 14~b!. It
also decreases initially likeT 0

crit up to %'1.3, but then in-
creases up to a maximum whose height and position
creases inK, before it falls towards the asymptotic value
T w

crit(K,`)51/2 for all finiteK. We again find a qualitatively
different behavior forK→` asT w

crit grows unabatedly with
%. Depending on the value ofK andT, the type of solution
can therefore change up to three times for increasing%.
Similar toT 0

crit , we also find thatT w
crit grows withK initially

(%&0.52), then decreases (0.52&%&1.97), and then in-
creases again.

It is also clear from the graphs and from the fact th
l 3

w<l 3
0 that T w

crit must be greater thanT 0
crit for all K and%

besides%50 whereT w
crit5T 0

crit . We can therefore divide the
optimal convergence behavior for allK, T, and% into three
regimes:

~1! T<T 0
crit(K,%)<T w

crit(K,%): The minimum ofl1 de-
fines the optimum and both learning rate parametrizati
behave identically (l w

opt5l 0
opt andh w

opt5h 0
opt).

~2! T 0
crit(K,%),T,T w

crit(K,%): The optimal solution is
different for both parametrizations. The minimum ofl1 is
still optimal for hu→`, but l122l350 defines the opti-
mum forhu5hw . The optimal convergence rates and lea
ing rates are different withl w

opt.l 0
opt andh w

opt,h 0
opt.

~3! T 0
crit(K,%)<T w

crit(K,%),T: Although the optimal so-
lution is now the root ofl122l3 for both parametrizations
we still find l w

opt>l 0
opt andh w

opt<h 0
opt sincel 3

w<l 3
0.

Since the three-dimensional parameter space is difficu
visualize, we study the optimal convergence exemplary
two slices.

2. Optimal dynamics in K-% space

In Fig. 15 we show the convergence behavior of the
rametrizationhu5hw5h0 @Figs. 15~a!–15~c!# in compari-
-

t

s

-

to
r

-

son to hu→` @Figs. 15~d!–15~f!# as a function ofK for
T51 and a range of% values. In Fig. 15~a! one can see tha
the optimal learning rateh 0

opt is hardly K dependent for
small % ~beside the inherent rescaling with 1/K implied by
the normalization of the soft-committee machine!, but in-
creases proportionally toK for large% before it eventually
levels off at a% dependent value. TheK→` analysis sug-
gests a scaling of the optimal learning rate with lnh 0

opt}%2

since the maximal learning rate scales in this fashion. Thi
mirrored in the behavior of the optimal convergence rate
Fig. 15~b! ~for graphical purposes multiplied byK) which
exhibits the expected 1/K behavior for small%. For large%,
however, the increase inh 0

opt}K for small K causesl 0
opt to

be constant untilh 0
opt levels off, whenl 0

opt reverts back to
the 1/K decay. We further note that the absolute value of
convergence ratel 0

opt initially increases for small% for all
values ofK, which is aT-dependent effect we will study in
more detail below. In Fig. 15~c! we further show the normal
ized difference between the maximal and optimal learn
rate defined as

Dh max
opt 5

hmax2hopt

hopt
.

We find thatD h0 max
opt initially increases with% for all K,

which is again a feature dependent onT, before it decreases
monotonically, reflecting a steeper and more skewed cu
for l1.

To compare the two learning rate parametrizations,
ratio of the optimal learning ratesh w

opt and h 0
opt shown in

Fig. 15~d! shows that for small% the ratio is identical since
T51,T 0

crit,T w
crit . For increasing% the ratio falls below 1

since h 0
opt is now determined by the root of 2l32l1

(T 0
crit,T,T w

crit). Increasing% even further, one finds tha
also h w

opt is determined initially by the root solution
(T 0

crit,T w
crit,T). For largerK one finds kinks in the curves

when the ratio approaches 1/2. A ratio of 1/2 suggests fo
assumed quadratic eigenvaluel1 that h 0

opt is close to the
maximal learning ratehmax, whereash w

opt is close to the
minimum located athmax/2. The kinks therefore coincide
with a change toT 0

crit,T,T w
crit above a value ofK depen-
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FIG. 15. The convergence scenario as a function ofK for T51 and various% given in the legends.~a! Optimal learning rateh 0
opt for

hu5h0. ~b! Optimal convergence ratel 0
opt , multiplied by K for convenience.~c! The normalized difference between the optimal a

maximal learning ratesDh0 max
opt . Ratio of the optimal learning ratesh w

opt andh 0
opt ~d!, the optimal convergence ratesl w

opt andl 0
opt ~e!, and

the normalized differencesDhw max
opt andDh0 max

opt ~f!.
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dent on% @e.g., for%56 the kink is atK'100, which co-
incides with Tcrit(100,6)'1 as can be seen in Fig. 14~b!#.
For even larger% this solution change is pushed out to larg
values ofK.

The ratio of the optimal convergence ratesl w
opt andl 0

opt

shown in Fig. 15~e! reflects the above observations. F
small % the minimum ofl1 is optimal and the ratio is 1
Even for largerT values, where the root solutions apply f
%50, ratios very close to 1 are observed for small%. For
larger %, however, the root solutions apply either for bo
learning rate parametrizations or at least forhu5hw and the
widening gap betweenl1 for the two learning rate param
etrizations leads to ratios above 1 increasing with%. The
benefit achievable is, however, limited eventually for largeK
when the optimal convergence of thehu→` parametrization
reverts back to the minimum ofl1.

This behavior holds similarly for the ratio of the norma
ized separation of maximal and optimal learning ra
Dhw max

opt andDh0 max
opt @Fig. 15~f!#. The widening gap betwee

l1 increases the ratio significantly above 1, onceh 0
opt is

given by the root solution. The nonmonotonic behavior
some of the lines in Fig. 15~f! can be explained by the
change in the degree of skewness ofl1 away from a para-
bolic form when the minimum solution applies forh w

opt.

3. Optimal dynamics in%-T space

When considering the optimal dynamics as a function
% andT, two natural scaling ansa¨tze for the bias% present
themselves~see discussion in Sec. II!, which become espe
cially relevant in the limitsT→` andT→0. The first ansatz
(%5%̂A11T), here termed effective bias, fixes the me
r

s

r

f

hidden unit output independent ofT, the other ansatz

(%5%̌AT), here termed abscissa, keeps the distance of
decision hyperplane to the origin constant. For largeT@1,
both ansa¨tze become identical to leading orders. For smallT,
however, there are significant differences. In this section

have adopted%̂ as the preferred variable since it results
the more universal behavior for finiteT, but we will discuss
their differences in detail in Sec. V C.

In Fig. 16 the influence of different teacher length valu
T is studied, where the convergence behavior of the par
etrizationhu→` @Figs. 16~a!–16~c!# is shown as a function
of %̂ for K5102 and a range ofT values~including theoret-
ical predictions from asymptotic analyses when useful!. ~Fig-
ure 16!~a! shows that the optimal learning rate increases
ponentionally in %̂2. For small %̂, the prefactor of the
exponentional increase approaches 1/2 for largeT, whereas it
approaches 1 for smallT, in agreement with the prediction
from theK→` andT→0 analyses@included in Fig. 16~a!#.
For larger%̂, however, one finds a prominent change in t
slope of theh w

opt curves, where the position of the transitio
and its significance is dependent onT. For very small but
finite T this transition is beyond the range of the graph a
the change in the slope becomes less significant. The limi
behavior is in agreement with theT→0 analysis@included in
Fig. 16~a!#. For finiteT, h w

opt still increases exponentionall

in %̂2 after the transition, but the constant prefactor in t
exponent is altered and decreases for largeT. The limiting
behavior is in agreement with the findings of theT→`
analysis for finiteK in Appendix B 5, which predicts a finite
limit of h w

opt for large %̂ also shown in Fig. 16~a!.
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FIG. 16. The convergence scenario as a function of%̂ for K5102 and variousT given in the legends including predictions from
expansions forT→0, T→`. ~a! Optimal learning rateh w

opt for hu5`. ~b! Optimal convergence ratel w
opt . ~c! The normalized difference

between the optimal and maximal learning ratesDhw max
opt . Ratio of the optimal learning ratesh w

opt andh 0
opt ~d!, the optimal convergence rate

l w
opt andl 0

opt ~e!, and the normalized differencesDhw max
opt andDh0 max

opt ~f!.
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The dependence of the optimal convergence eigenv
l w

opt shown in Fig. 16~b! is similarly intriguing. One finds

that the convergence rate increases initially with%̂ up to
maximum, whose position shifts to larger%̂ values for de-
creasingT and becomes flatter for increasingT. Beyond the
maximum, l w

opt decreases exponentionally in%̂2, with the
prefactor in the exponentional increasing withT, but saturat-
ing at 1/2 as predicted from theT→` analysis. The smallT
expansion predicts the steep initial increase inl w

opt correctly,

as the order of the optimal convergence rate for nonzero%̂ is
not O(T2/K) as for zero%̂ but O(T/K). The expansion is a
good approximation for small finiteT and small%̂ but breaks
down for larger%̂, where the optimal convergence ratel w

opt

reaches an almostT-independent maximum ofO(1/K) and
also cannot account for the eventual exponentional decr
of l w

opt with %̂ beyond the maximum. This failure is cause

by the implicit assumption%̂2!2 ln T in the T→0 limit,
which shifts the maximum inl w

opt to %̂5`. For larger net-
work sizesK not shown here, one finds that the position
the maximum shifts to larger%̂ and becomes flatter. Thi
effect leads to the shift of the maximum to%̂5` in the K
→` expansion.

The behavior of the normalized separationDhw max
opt in Fig.

16~c! reflects the kind of solution present. For sm
T,T w

crit , the minimum ofl1 is optimal andDhw max
opt in-

creases monotonically towards 1; i.e.,l1 becomes parabolic
for large %̂. For T51, we find the same behavior for sma
%̂, but find a prominent kink at%̂'4.25@i.e., %'6, see Fig.
ue

se

f

l

14~b!#, which coincides withTcrit51. For %̂.4.25,Tcrit,1
and Dhw max

opt falls to a constant below 1. For largerT, the
behavior is similar but smoother in comparison toT51, re-
flecting the fact that although the optimal solution is alwa
given by the root, its distance to the minimum changes w
%̂ asT w

crit rises and falls.
The results for the parametrizationhu5hw are quite simi-

lar to hu→` and to enhance the differences we show
ratios of the relevant quantities in Figs. 16~d!–16~f!. For the
optimal learning rateh 0

opt, we also find the change in th
exponentional behavior. For large enoughT.T 0

crit , the ratio
of the h w

opt/h 0
opt falls below 1 @see Fig. 16~d!# and ap-

proaches a constant limit for large%̂. For mediumT ~e.g.,
T51), the difference is most pronounced, reflecting t
many changes in the type of solutions due to the variabi
of T w

crit andT 0
crit . For small%̂, the minimum solution ofl1 is

optimal for both learning rate parametrizations. In the ran
of 0.40&%̂&4.25 ~i.e., 0.55&%&6), T 0

crit,T,T w
crit and the

ratio drops significantly@27# towards 1/2 until alsoT w
crit,T

and the ratio rises again towards the asymptotic behavio
The improvement by using a large bias learning rate

reflected in the ratiol w
opt/l 0

opt @Fig. 16~e!#, which increases

monotonically with %̂, for T or %̂ large enough so tha
T.T 0

crit . In theT.T w
crit region, the ratiol w

opt/l 0
opt increases

with a01a2%̂
2, wherea0 anda2 areT-dependent constant

that approacha051 anda251 for largeT as predicted by
the T→` analysis. Using largehu is similarly beneficial in
the same region ofT and%̂ with respect to the separation o
maximal and optimal learning rates as depicted in Fig. 16~f!.
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For largerT, we find the same regression behavior of
ratio Dhw max

opt /Dh0 max
opt with b01b2%̂

2, whereb0 andb2 are

againT-dependent constants with the asymptotic limit 11%̂2

for T→`. In the curve for T51, one observes sever
swerves and a kink due toT 0

crit or T w
crit crossingT51.

C. The impact of adaptive biases

In comparison to the analysis of the convergence ph
for zero-fixed biases@18#, the extension to variable nonze
biases, has revealed several insights. For smallT, where the
training for the zero-bias case is slowed down by a fac
1/T2, arguably due to the nearly linear network output m
ing the distinction between different units difficult, one fin
that the scaling assumption for the bias has a dramatic
pact. This can be understood qualitatively by considering
network output distribution, which can be calculated
closed form in theT→0 limit.

For finite abscissa~using the scaling%5%̌AT), the hid-
den unit output distribution is Gaussian with me
m52A2K/p%̌AT and standard deviations5A2/pAT. The
probability of a positive~and hence negative! output remains
constant for T→0 and is equal toH(%̌AK), where
H(x)5* x

`dx/A2pexp(2x2/2), i.e., even for smallT the
output of the hidden unit will have some probability of bei
both negative and positive, but the mean goes to zero.
this scaling, one finds a slight improvement in the conv
gence rate for nonzero bias by a factor 112%̌2, suggesting
that breaking the symmetry of the network output distrib
tion around zero is beneficial, but a more significant i
provement is not possible since the hidden unit outputs
mainly in the linear regime where the student cannot
criminate efficiently between the teacher hidden units
the convergence rate still decays withT2.

For finite effective bias~using the scaling%5%̂A11T),
the network output distribution is also Gaussian for smalT,
but with mean m52AKg(%̂) and standard deviatio
s5A2/pexp(2%̂2/2)AT. The probability of an output of op
posite sign to the mean output vanishes forT→0. The single
hidden unit output is concentrated in the nonlinear region
the sigmoidal activation function and one could argue t
most information about teacher parameters can be extra
by the student in this region as long as the hidden units
not too saturated, leading to the improvement in the con
gence rate byO(%̂2/T).

One could further speculate that the increase of the o
mal learning rate matching the suppression of the gradie
facilitated by the exponentional decrease of the network
put variance with%̂. For finiteT and larger%̂, the results for
the T→0 expansion become inaccurate for%̂2!2 ln T and
one finds that the optimal learning rate growth cannot
sustained, leading to the eventual exponentional decay o
convergence eigenvalue with%̂2 as observed for finiteK.
Due to theT dependence of this breakdown, one even fi
the anomaly that training can be momentarily improv
when decreasingT slightly @see Fig. 16~b!#.

The unsustainability of the optimal learning rate growth
epitomized in theT→` limit, where the optimal learning
se
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rate stays constant for all%̂. However, if theK→` limit is
taken simultaneously withT→`, the convergence rate eithe
remains constant forhu→` or decays algebraically with

(11%̂)2 for hu5hw . Similar behavior is also found for fi-

nite T and largeK for small enough%̂.
The underlying reasons for this difference can be

plained most easily for the infiniteT case, where the hidde
unit output becomes binary and the subsequent network
put probability distribution is binomial, as teacher hidd
units are uncorrelated. The probability of a single hidd
output to be11 parametrizes the binomial distribution an
is 1/2@12g(%̂)#, i.e., 1/2 for%̂50 and decays exponention
ally fast for large%̂ (}e2%̂2

). The corresponding mean an

standard deviation arem52AKg(%̂) and s5A12g2(%̂),
respectively. Since both student and teacher networks
highly correlated, the error signal should be at mostO(1/K),
i.e., at most two hidden units disagree, leading to a poss
increase of the learning rate withK. For large effective bias
%̂, this event becomes exponentionally unlikely and the er
signal is identically zero most of the time. The learning ra
however, cannot be increased accordingly since this wo
lead to an exponentionally large update step size in an e
event. The convergence rate has therefore to decay expo
tionally. For K→`, the binomial output distribution be
comes Gaussian with the above mean and variance, lea
to smooth network outputs and error signals. Here, the le
ing rate can be increased exponentionally, which may
linked to the exponentional decrease of the output varia
for large %̂ combined with the implicit assumption tha
%̂2! ln K. This behavior carries over qualitatively to finiteT

and K for %̂2 small enough, and can explain the initi
matching increase of the optimal learning rate and the ex
sion of the region of almost constant convergence rate
largerK.

VI. TOWARDS MORE REALISTIC SCENARIOS

The scope of this work has so far been restricted in s
eral ways. One obvious restriction has been the fixed hidd
output weights. Although soft-committee machines with
ases are universal approximators@8#, in practice it is
advantageous to use adjustable hidden-output weights.
extension is straightforward in terms of feasibility, but add
further dimension to the space of parameters to be inve
gated. We expect our results to be at least qualitatively c
rect, but we cannot rule out that the dynamics become e
richer with more suboptimal fixed points. Unfortunately, t
works to date that have allowed for adjustable hidden-out
units @6,7# have not discussed the issue of hidden unit sy
metry breaking.

We have furthermore restricted ourselves to realiza
scenarios, where the student network can learn to imitate
teacher network perfectly. In real learning scenarios, one
pects both structural unrealizability, due to a mismatch
tween the function space of the student and the task, as
as unrealizability due to corrupted training data. Both typ
of unrealizability can be incorporated in this framework,
studying KÞM and by allowing for noise on the teache
weights and/or outputs, respectively. Both have been
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FIG. 17. A typical training dynamics is shown as a function ofa for an unrealizable caseK53 andM54. The teacher tasks are of th
form Tnm5dnm(n11)/2 for graded andTnm5dnm for isotropic teachers;%n5(2n25)/5A11Tnn for non-degenerate and%n50 for degen-
erate teacher biases. The common learning is alwaysh052. The evolution of the student-student overlapsQi j ~a!, the student-teache
overlapsRin ~b!, and the student biasesu i ~c! are shown forT n

i . The generalization erroreg ~d! is shown for all tasks, with the inse
magnifying the escape out of the symmetric phase for the students learning the less symmetric tasks.
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dressed already for the soft-committee machine without
ases@2,28,29#.

Here we will briefly assess the effects arising due to
introduction of adjustable biases in the case of structural
realizability. In Fig. 17 the evolution of the training is show
for K53 andM54, i.e., when the target function is mor
complicated than the mapping the student can achieve.
teacher overlaps areTnm5dnm(n11)/2 for graded and
Tnm5dnm for isotropic teachers. The teacher biases
%n5(2n25)/5A11Tnn for nondegenerate and%n50 for
degenerate teachers. The common learning rate is alw
h052 and the weight initialization isQii 5(181n)/100,
u i5(n22)/100, and random overlaps as outlined in Sec.
The initialization was chosen quite symmetrically to ma
differences between the tasks more pronounced and to en
convergence to a fixed point with the lowest generalizat
error for the most symmetric taskT d

i .
The main focus will be on theT n

i since for this task the
effect of nondegenerate teacher biases can be separated
the effect of graded teacher norms. In Figs. 17~a!–17~c! the
evolution of the overlapsQi j , Rin and the biasesu i is
shown. The student is initially drawn into a symmetric pha
with similar values for student lengthsQii and correlations
Qi j @Fig. 17~a!#. This is mirrored by similar student-teach
overlapsRin shown in Fig. 17~b!, signaling the lack of sig-
nificant specialization with a specific teacher node. The s
cialization is driven by the student biases depicted in F
17~c!, whose symmetry is broken first and whose trajector
do not cross, although they were initialized quite symme
i-
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cally. Since the student network does not have enough
sources to model the teacher task adequately, it choose
dedicate two units (1 and 3) to specialize primarily on t
teacher hidden units (1 and 4) with the largest absolute
value; which is reflected by largeR11 andR34 values and the
proximity of the student biasesu1 andu3 to the correspond-
ing teacher biases%1 and%4. This seems sensible since the
two units have on average the largest~absolute! output. The
last student unit 2 specializes almost equally on the two
maining teacher units 2 and 3~large R22, R23 and u2 lies
between%2 %3). The remaining student-teacher overlaps f
roughly into two groups: the student units~1,4!, which are
highly specialized on one unit, acquire a relatively lar
overlap with the remaining teacher units~2,3! for which no
dedicated student unit exists, whereas they retain only sm
correlations of either positive or negative sign with tho
teacher units, which are already modeled almost entirely
another student unit. The size of the individual stude
teacher overlaps is also highly correlated with the proxim
of the associated student and teacher biases~e.g.,
R23.R13.R33 for fixed teacher unit orR34.R33.R32.R31
for fixed student unit!. One further notices that the stude
biases are positioned to ensure that the means of the stu
and teacher network output distributions~which is just the
sum of the means of the individual hidden unit output dis
butions in a network! are very similar. Matching the mean o
the teacher output distribution is obviously a necessary
not sufficient condition for achieving a small generalizati
error.
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Obviously, the specialization process described abov
dependent on the teacher task presented. For graded te
tasks, the larger teacher hidden unit weight vectors lead
larger variance of their output distributions~and ultimately
the output distribution of the whole network!. The student
hidden units have therefore to compromise between pri
rily modeling large variance by specializing on teacher un
with large weight norms and modeling large mean by s
cializing on teacher units with large~effective! biases. We
still find that the student biases are positioned to ensure
the mean output is approximately identical, but the stud
also accounts for larger variances. For degenerate biases
finds that the dynamics and the optimal attractive fixed po
are very similar to the fixed bias case for both graded
isotropic teachers, with the student biases taking values c
to the degenerate~effective! teacher bias position@30#.

In Fig. 17~d! the dynamics of the four different gener
tasks are compared by following the evolution of the gen
alization error. As for realizable learning scenarios, one fi
that the specialization process for the taskT d

i is by far the
slowest due to the slow breaking of the symmetries. For
taskT d

g one finds more than one plateau in the generaliza
error @see inset of Fig. 17~d!# characteristic of the sequentia
symmetry breaking for graded teacher lengths. The fas
training is exhibited by the tasks with nondegenerate bia
T n, with a slight speedup for graded teacher lengthsT g

n .
Unlike in realizable scenarios, the dynamics approach a n
zero asymptotic generalization error, which is smallest
the taskT d

i with most symmetries. For the tasks presen
here, the breaking of the bias degeneracy results in a sm
increase of the generalization error than the breaking
length isotropy. This feature, however, depends on the
ticular choice of teacher norms and biases.

Similar to the realizable case, we also find that the
namics are sensitive to the initial conditions, especially
tasks with many symmetries such asT d

i , and the asymptotic
network configuration can vary significantly in their gene
alization error. For theT d

i , the basin of attraction to the
optimal solution described above is quite small and requ
highly symmetric initial bias values. Otherwise the bias d
namics show the grouping around the true teacher bias v
similar to the realizable case with the notable difference, t
the bias values seem to diverge instead of converging
~suboptimal! fixed values.

For nondegenerate biases, one also finds a multitud
stable network configurations depending on the initial con
tions, which all feature quite similar generalization error. F
the taskT n

i , for example, a different set of initial condition
@changing only the normsQii 5(11n)/10] leads to studen
unit 2 specializing primarily on teacher unit 3 instead
specializing almost equally on teacher units 2 and 3
results in a slightly smaller generalization error. We find th
the evolution of the dynamics to solutions with simil
asymptotic generalization errors are qualitatively similar,
one does not find a dominant basin of attraction to a part
lar solution as in the case of fixed biases. A more deta
investigation is therefore beyond the scope of this paper
will be reported elsewhere.

Finally we would like to point out that in the case o
student-teacher mismatchKÞM , the difference between th
is
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normalized and unnormalized committee machine are s
stantial and the results are therefore quite different.
K.M , the unnormalized soft-committee machine is over
alizable and the excess nodes can be pruned away to ac
perfect generalization. This is obviously not possible for t
normalized soft-committee machine due to the different n
malization factor, and the task becomes unrealizable wit
finite asymptotic generalization error. ForK,M , the nor-
malization of the committee machine leads to genera
lower asymptotic values of the order parameters with a
sulting generalization error that is always lower than for t
unnormalized case. This seems to be due to the norma
tion keeping the variance of the network output distributi
of constant order~for uncorrelated teacher weight vector!
irrespective of the number of hidden units, whereas the or
of the output variance is mismatched (AK andAM ) in the
unnormalized model.

VII. SUMMARY AND DISCUSSION

This research has been motivated by recent progres
the theoretical study of on-line learning in realistic two-lay
neural network models—the soft-committee machin
trained with back-propagation@2#. The studies so far have
excluded biases to the hidden layers, a constraint that
been removed in this paper. Such a network is in principl
universal approximator@8#, although within the framework
at issue the model can only be studied in a limit where
approximation proof does not necessarily hold as it may
quire the number of hidden units to scale withN. Neverthe-
less, the dynamics of the extended model turn out to be v
rich and more complex than the original model, although
had to restrict ourselves for computational reasons to sm
networks.

For nondegenerate teacher biases, one finds that the
metry in the student hidden unit space can be broken alm
immediately by the biases, provided the student biases w
initialized asymmetrically, speeding up the learning proc
considerably in comparison to the fixed bias model where
training process can easily be dominated by the symme
phase characterized by a lack of hidden unit specializat
These results suggest that student biases should in pra
be initially spread evenly across the input domain if there
no a priori knowledge of the target function. For degenera
teacher biases, however, especially in combination w
similar teacher lengths, such a scheme can be extrem
counterproductive as asymmetric initial student biases
verely prolong the training and can in many cases even
the learning process permanently in attractive fixed poin
Although attractive suboptimal fixed points were also fou
in the original soft-committee machine model@20#, these
seem to have been restricted to overrealizable cases an
associated basins of attraction have been very small.

Unlike in the fixed bias case, the initial conditions,Qi j
and u i , which can be manipulated in real scenarios, infl
ence the training time considerably, and can even cause c
plete training failure. To gain a qualitative understanding
the influence of the initial conditions, the basins of attracti
to the optimal solution were therefore studied exhaustiv
for K5M52. One finds that attractive suboptimal fixe
points exist for many training scenarios, including grad
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teachers and even nondegenerate teacher biases. The
of initial conditions attracted to these suboptimal netwo
configurations diminishes with increasing asymmetry of
task, especially for nondegenerate teacher biases, wher
attractive fixed point vanishes eventually. In the task with
smallest basin of attraction, isotropic teacher weight vec
and degenerate teacher biases, which was studied in
detail, one finds several unexpected results. First, the b
of attraction is mainly dependent on the difference in
initial student biases, rather than their individual abscissa
the resulting mean. Second, the basin of attraction, with
spect to the student biasesu i , grows with increasing studen
norms, but the corresponding abscissa (û5u/AQ) decreases
Third, the basin of attraction is enlarged by larger init
student-teacher overlaps and training should therefore be
prone to failure for smaller input dimension.

Additionally, the influence of the learning rates on t
basin of attraction was studied for the same isotropic
degenerate task. For a common learning rate for biases
weights, the basin of attraction shrinks to a minimum in t
region of fastest convergence, i.e., for the overall optim
learning rate. The basin of attraction increases especially
small learning rate but always remains finite. The separa
of the bias and weight learning rate seems, however, m
effective in increasing the basin of attraction. Whereas
must necessarily pay dearly for stability with a decrease
convergence speed when employing a small bias or we
learning rate, a large bias learning rate does not comprom
training efficiency.

Although most of the results found forK52 also carry
over qualitatively to larger networks, the size of the basin
attraction shrinks considerably with network size, which m
partly be contributed to the substantial increase in the n
ber of attractive suboptimal fixed points with different inte
nal symmetries. In particular, we have found that the use
large bias learning rate or the adiabatic elimination of
biases can actually decrease the basin of attraction for la
networks and degenerate biases.

Unlike preliminary results@8#, which seemed to suppor
the heuristic suggestion in an earlier work@21# to spread the
abscissas across the input domain in order to speed up t
ing, our more extensive work clearly suggests that such
initialization scheme may in general not be advisable. O
results show that in terms of the initialization, the differen
in the threshold values and not the individual abscissas
the more relevant variables. Furthermore, such a scheme
most likely fail to convergence to the optimal solution wh
some of the biases are degenerate, although one can
speculate how commonly these tasks are encountere
practice.

Other previous work@22#, which relates the basin of at
traction of the weight initialization with the learning rat
seems also to be partially contradicted by our findings.
though the basin of attraction does grow with decreas
learning rate, as found in@22#, the functional relationship
given for convergence in this work (h0,Qii 1u i

2) fails to
predict a finite boundary for an infinitesimal learning ra
Furthermore, the treatment of the biases as just ano
weight parameter suggests a growing basin of attraction w
both increasing weights and biases, whereas we find
biases actually have the reverse effect. The work also
nge
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glects the strong interaction between the hidden units, e
the importance of the difference in initial thresholds or t
shrinking of the basin of attraction for larger networks.

An initialization procedure that provides both stabili
and fast convergence speed for all tasks seems therefore
ficult to realize due to the inherently different requiremen
for tasks with degenerate and nondegenerate biases.
probably most successful approach is to opt for a combi
approach of medium spread of the biases and large in
weights, a reasonable separation of weight and bias lear
rate. This must be combined with a criterion that resta
network biases for hidden units trapped in an attractive s
optimal fixed point. Since for most attractive fixed poin
found, the student hidden units are not highly saturat
i.e., the absolute values of their mean output are reason
less than 1, it is not sufficient to just select saturated u
with large effective bias. This criterion must therefore a
count for the actual bias values in combination with corre
tions between the student hidden unit weight vectors.
persistently large correlation between a pair of weight v
tors and very similar lengths, the biases could, for exam
be reset to their mean value. If such a strategy works in
situations remains to be shown, which goes beyond the sc
of this paper. Possible difficulties are likely to be unreal
able scenarios, where persistent correlation is caused
lack of student resources and a successful algorithm wo
have to be able to distinguish between the two. Its usefuln
would then have to be further tested in finite size syste
and real world problems. However, as already mentioned
cases where the training set is known in advance, many
gorithms are available that aim to infer good initial cond
tions from the training data~see, e.g.,@24# and references
therein!.

Unlike for the entire training process and general learn
scenarios, where we had to restrict ourselves to small
works, the dynamics can be studied and optimized for
network sizes for the isotropic degenerate teacher task in
convergence phase, where hidden unit symmetry is alre
broken successfully and the student approaches the opt
solution. Since this type of task is the slowest not only
terms of overall training time, but also in the convergen
phase itself, the results should give us a bound on the
formance of other tasks.

One finds that optimal convergence is achieved for
infinite bias learning rate, suggesting that anO(1) rather
than an O(1/N) bias learning rate is appropriate for finit
systems once hidden unit symmetry is broken and the in
hidden weights dominate the learning behavior in this pha
The dependence of the optimal~weight! learning rate has
been studied as a function of the number of hidden unitsK
and the teacher lengthT with special emphasis on the influ
ence of nonzero~effective! bias %̂, which provides the mos
useful scaling of the bias in the convergence phase. We h
restricted ourselves also to two learning rate parametrizat
for the biases:hu5hw and hu→`. One finds that for both
small T and small%̂, there is either no or little difference
between the two parametrizations. The advantage of an
creased bias learning rate grows, however, for large eno
T approximately proportionally to%̂2.

The influence of the value of the effective teacher bia
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%̂ manifests itself for both parametrizations in the initia
surprising effect that for mostT values the learning perfor
mance actually improves for small nonzero bias. This can
explained by postulating that most information on the para
eters of an individual hidden unit can be obtained in
region where the sigmoid is already nonlinear but not qu
saturated. In this region one finds an exponentional incre
in the optimal learning rate matching the suppression of
gradient. This increase, however, cannot be sustained
larger%̂ and leads to an eventual exponentional decay of
convergence speed in%̂2 for any finiteK. This exponentional
decay is delayed to larger%̂ values for small teacher lengthT
and large network sizeK, which may be attributed to the
increasing smoothness of the error signals allowing fo
larger learning rate. This fact is epitomized in theT→0 and
K→` limits, where the convergence rate does increase
abatedly or decreases at most algebraically in%̂, respec-
tively.

The choice of the learning rate is therefore important
both the symmetric phase, where it can help to avoid
attractive fixed point, and the convergence phase, where
optimal value varies significantly in the relevant region
parameter space, making it difficult to choose good learn
rates in practice. The problem of training is also exacerba
by the difficulty of student parameter initialization withouta
priori knowledge about the learning task present, which
change the basin of attraction to the optimal solution con
erably.

Future research effort should therefore be aimed at de
ing more sophisticated on-line learning algorithms, wh
are able to infer information about the teacher task and
progress made in training by monitoring the student para
eters and subsequently adjusting the learning rates acc
ingly or restarting hidden units trapped in suboptimal fix
points. The introduction of individual learning rates for ea
hidden unit, already shown to be beneficial for the fixed
ased model@19#, seems a further direction worthwhile t
pursue. Since the learning dynamics have shown to cha
significantly with the introduction of adjustable biases f
realizable scenarios, it appears to be of obvious interes
investigate the influence of unrealizability more systema
than could be achieved within the scope of this paper.
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APPENDIX A: DYNAMICAL EQUATIONS

The generalization error is calculated by averaging
quadratic loss function~3! explicitly over the activations
$x,y% ~and implicitly over all inputs!, which are multivariate
Gaussian distributed with zero mean and covariance matrC
given by
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C5s2F Q R

RT TG . ~A1!

In the following all averages are taken with respect to t
distribution and making use of the convention that indic
i , j ,k,l and n,m label student and teacher nodes, resp
tively.

The generalization error then takes the form

eg5
g2

2KH K

M (
n,m51

M

J2~n,m!22AK

M (
i ,n51

K,M

J2~ i ,n!

1 (
i , j 51

K

J2~ i , j !J , ~A2!

with the integralJ2(1,2)5^g(u1)g(u2)&, whereui represent
members of$x,y% and the sigmoidal transfer functiong is
here taken to be the error functiongn(u)5erf(nu/A2). We
denote withI d , Jd averages overd variables with one and
two g terms, respectively. Unlike in the case of fixed ze
biases, only integrals involving a singleg term can be cal-
culated analytically, whereas general Gaussian integrals
volving g2 terms of shifted arguments have no known an
lytical solution. However, these integrals can be simplifi
considerably to make a numerical integration feasible. Th
are several possible representations, e.g., the Kendall s
expansion, but we have chosen one that consists of a si
Gaussian integral of two error functions. We have found t
this form has the advantage that the summation over u
and the integration can be interchanged, greatly improv
numerical accuracy for fixed computational cost.

In this form the integralJ2() is given by

J2~1,2!5E Dtgn~As2C11t

2q1!gnS s2C12t2q2

As2C11c22n2s2C 12
2 D , ~A3!

where

c i511n2s2Cii and Dt5
dt

A2p
expS 2

t2

2 D
is the Gaussian measure, with any integral without expl
limits is from 2` to 1`. The dependence of the integral o
the sigmoidal gainn can be absorbed by redefining

q̃ i5nq i and C̃i j 5n2s2Ci j ,

a rescaling that also holds for the other integrals below.
evaluate an integral explicitly, the full covariance matrixC is
projected into the relevant subspace. For example, the
evant elements forJ2( i ,n) are C115Qii , C125Rin , and
C225Tnn . It is a property of multivariate Gaussian distribu
tions @2# that integrals of reduced dimensionality such
J2(1,1) are generated from the general formJ2(1,2) by the
appropriate constraints~in this caseC115C125C22).

The differential equations forQ, R, andu are calculated
similarly and take the form
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dQi j

da
5

hwg2

K HAK

M (
m51

M

I 3~ i , j ,m!1 I 3~ j ,i ,m!2 (
k51

K

I 3~ i , j ,k!1 I 3~ j ,i ,k!J
1S hg2

K D 2H K

M (
n,m51

M

J4~ i , j ,n,m!22AK

M (
k,n51

K,M

J4~ i , j ,k,n!1 (
k,l 51

K

J4~ i , j ,k,l !J , ~A4a!

dRin

da
5

hwg2

K HAK

M (
m51

M

I 3~ i ,n,m!2 (
k51

K

I 3~ i ,n,k!J , ~A4b!

du i

da
52
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k51
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I 2~ i ,k!J , ~A4c!
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where the two integrals I 2(1,2)5^g8(u1)g(u2)& and
I 3(1,2,3)5^g8(u1)u2 g(u3)& can be evaluated analytically
whereas J4(1,2,3,4)5^g8(u1)g8(u2)g(u3)g(u4)& can be
simplified to a form similar toJ2() and one finds

I 2~1,2!5nA2

p

1

Ac1

expS 2
1

2

q̃ 1
2

c1
D g1~Q12!, ~A5a!

I 3~1,2,3!5A2

p

1

Ac1

expS 2
1

2

q̃ 1
2

c1
D F C̃13q̃1

c1

g1~Q12!

1A2

p

C12G13

AC13Ac1

expS 2
1

2
Q 12

2 D G , ~A5b!

J4~1,2,3,4!5n2expS 2
1

2

c2q̃ 1
222C̃12q̃1q̃21c1q̃ 2

2

C12
D

3
2

p

1

AC12

E Dtg1~AC̃833t2q̃83!

3g1S C̃834t2q̃84

AC̃833c 482C̃ 348
2
D , ~A5c!

where we conveniently define

C i j 5c ic j2C̃ i j
2 ,

Q i j 5
C̃i j q̃ i2c iq̃ j

Ac iC i j

,

G1i5
c1C̃2i2C̃12C̃1i

C12
,

G2i5
c2C̃1i2C̃12C̃2i

C12
,

and the primed variables
C̃8 i j 5C̃i j 2~C̃1iG2 j1C̃2iG1 j !,

q̃ i85q̃ i2~q̃1G2i1q̃2G1i !,

with the obvious extensions, e.g.,c i8511C̃ ii8 . Again, one
infers the elements of the reduced covariance matrix us
the unit labeling convention and the appropriate dimensi
ality reduction.

As mentioned above the gainn rescales all order param
eters and the biases explicitly and furthermore leads to
implicit rescaling of both learning rates byn2 in the differ-
ential equations~A4!. The learning rates are further rescal
by the linear output gain byg2. The total rescaling of any
bias and the bias learning rateh0 therefore is

q̃5nq, and h̃u5
n2g2

~K !
hu . ~A6a!

For the weight order parameters and their learning ratehw ,
the input variances2 can also be absorbed to give

C̃5n2s2C and h̃w5
n2g2s2

~K !
hw . ~A6b!

In the remainder of the paper we will therefore s
n5g5s51 without loss of generality.

APPENDIX B: THE REDUCED EQUATIONS
CONVERGENCE DYNAMICS

For a realizable isotropic teacher scenario character
by K5M , Tnm5Tdnm , and degenerate biases%n5%, the
number of free parameters can be reduced with the an
~13!, to just five variablesR, S, Q, C, andu, which gives an
accurate description for the dynamics when the student
ases were not initialized too unsymmetrically.

In the convergence phase one can expand the differe
equations~A4! in a Taylor series to first order around th
zero generalization error fixed point,Q* 5R* 5T,
C* 5S* 50, andu* 5%,

dpi

da
5(

j 51

4

mi j pj ,
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wherepi5Pi2P i* andPi are generic order parameters~we
use the orderingP15R, P25Q, P35S, P45C, andP55u
following the convention of earlier work@2#!, and the eigen-
values and eigenvectors of the Jacobian matrixM of first
derivatives determine the solution of the linearized differe
tial equation.

The elements of the Jacobian matrix are explicitly giv
by

m1152
2

p

hw

K

exp@2%2/~112T!#

~112T!3/2 F ~113T!2
2T%2

112TG ,
~B1a!

m125
1

p

hw

K H 3
@~112T!22%2#T

~112T!5/2
expS 2

%2

112TD
2~K21!

T%2

~11T!3
expS 2

%2

11TD J , ~B1b!

m135
2

p

hw

K

K21

~11T!2
e2%2/~11T!F ~112T!2

T%2

11TG ,
~B1c!

m1452
2

p

hw

K
~K21!e2%2/~11T!

@~11T!2%2#T

~11T!3
,

~B1d!

m155
2

p

hw

K
%TF2

e2%2/~112T!

~112T!3/2
1

K21

~11T!2
e2%2/~11T!G ,

~B1e!
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p
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hw

K F ~K22!~11T!22T%2

~11T!3
expS 2

%2

11TD
1

1

A112T
expS 2

%2

112TD G , ~B1k!

m3452
2

p

hw

K

T%2

~11T!3
expS 2

%2

11TD , ~B1l!

m3552
2

p

hw

K

T%

~11T!2
expS 2

%2

11TD , ~B1m!

m4152
4

p

hw

K
expS 2

%2

11TD F 1

11T
2m 238 G , ~B1n!

m435
4

p

hw

K H ~K22!~11T!21T%2

~11T!3
expS 2

%2

11TD
1

1

A112T
expS 2

%2

112TD
2

2

p

hw

K F 2

112T
e22%2/~112T!1~K22!e2%2/~11T!

3S 4

A112T
e2%2/~112T!1

K23

11T
e2%2/~11T!D G J ,

~B1o!

m5152
2

p

hu

K

%

~112T!3/2
expS 2

%2

112TD , ~B1p!

m5252
1

p

hu

K
%Fe2%2/~112T!

~112T!3/2
1

K21

~11T!2
e2%2/~11T!G ,

~B1q!

m535
2

p

hu

K
~K21!

%

~11T!2
expS 2

%2

11TD , ~B1r!

m5552
2

p

hu

K Fexp@2%2/~112T!#

A112T
1

K21

11T
e2%2/~11T!G .

~B1s!

The remaining elements can be deduced by the matrix r
tions

m112
1
2 m215m2222m12, ~B2!

m332
1
2 m435m4422m34,

m132
1
2 m235m2422m14,

m312
1
2 m415m4222m32,

m2552m15,
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m4552m45,

m5452m53.

The characteristic polynomial of such a Jacobian mat
whose zeroes define the eigenvalues, separates into a
dratic and a cubic equation. The two eigenvalues given
the quadratic equation correspond to those of the 434 ma-
trix with fixed biases and are given by

l1,25
1
2 @A11B16A~A12B1!214C1D1#, ~B3a!

with

A15m112
1
2 m21 B15m4422m34,

~B3b!

C15m312
1
2 m41 D15m2422m14.

These eigenvalues are nonlinear in the learning ratehw .
The remaining eigenvalues are given by the solutions

the cubic equation

l31a2l21a1l1a050, ~B4a!

with coefficients

a252~m551A21B2!,

a15m55~A21B2!1~A2B22C2D2!2E2m152m54m35,

a052m55~A2B22C2D2!1m54~m35A22m15D2!

1E2~m15B22m35C2!, ~B4b!

where

A25m1112m12, B25m441
1
2 m43,

C25m3112m32, D25m241
1
2 m23, ~B4c!

E25m5112m52.

These eigenvalues are negative for all values ofhw andhu .
For hw5hu5h0, these eigenvalues are also linear inh0.

This can be confirmed by finding the zeroes of the de
minant in the two learning rateshw and hu , which corre-
spond to an eigenvalue becoming zero and therefore de
critical ~maximal! learning rates. For the equations for th
determinant roots

A1B12C1D150, ~B5a!

a250, ~B5b!
,
ua-
y

o

r-

ne

we obtain only one nontrivial, i.e., nonzero, solution for E
~B5a! and hence the weight learning ratehw , coinciding
with l150, and in particular no nontrivial solution for Eq
~B5b! and hence the bias learning ratehu . This and numeri-
cal solutions suggest that the optimal bias learning rate
located at infinity.

This can be explicitly shown for the special case%50,
where the eigenvalue spectrum separates further. A cl
inspection of the matrix elements reveals that allm5i andmi5
for iÞ5 become zero and the eigenvalues take the form

l3,45
1
2 @A21B26A~A22B2!214C2D2#, ~B6a!

l55m55, ~B6b!

recovering the convergence dynamics of the weight or
parameters in the isotropic case with fixed biases stud
previously @18#, but for an extra eigenvalue describing th
decay of the student biases to their optimal value. Since o
this eigenvalue depends~linearly! on hu , the optimal bias
learning rate is at infinity.

To make progress in the general case of nonzero tea
bias, we restrict our study to two possible parametrizatio
h05hu5hw and a finite weight learning ratehw with hu
→`. In the following, we use the convention that th
~weight! learning rate will be denoted byh for the generic
case or when a result is valid for both parametrizations.

For largehu , we expand the characteristic polynomi
~B4a! asymptotically with the two ansa¨tze l5 O(hu) and
l5 O(1). Onefinds that the characteristic polynomial sep
rates as expected into

l3,45
1
2 ~A21B2!2

E2m151m54m35

2m55

6 1
2 F ~A22B2!214C2D21S E2m151m54m35

m55
D 2

22
~A22B2!~E2m152m54m35!

m55

24
E2m35C21m54m15D2

m55
G1/2

, ~B7a!

l55m55, ~B7b!

which is similar to the zero bias case, but with corrections
the eigenvaluesl3,4 due to the finite biases. However, the
eigenvalues become independent of the value ofhu .

In order to study the optimal value of the learning rateh,
which gives the fastest decay to zero generalization er
one has to assess which mode, i.e., eigenvalue and as
ated eigenvector, contributes to its decay. We therefore
pand the generalization error~A2! to second order in
$q,r ,s,c,q%:
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eg5
e2%2/~112T!

pA112T
F ~2r 2q!2

1

4
~2r 2q!2

T~112T!1%2

~112T!2

1q~r 2q!
~112T!22%2

~112T!2
1q%

2r 23q

112T
1q2G

2
K21

p~11T!
e2%2/~11T!F ~2s2c!1q~s2c!

~11T!2%2

~11T!2

1
1

4
~4s222c22q2!

%2

~11T!2

1q~2s22c1q!
%

11T
2q2G . ~B8!

Unfortunately, we were unable to find analytical solutions
the eigenvectors. Numerical solutions, however, show
the eigenvectors associated with the eigenvaluesl3,4,5 are
orthogonal to the first-order terms in the generalization e
and thus cannot contribute to their decay. These modes
therefore only relevant for second-order terms in the gen
alization error with a decay rate of 2l3,4,5. As discussed in
Sec. V, the fastest convergence is given by Eq.~14!. This is
usually achieved either forh r

opt, where 2l35l1, or for
h m

opt, which is defined by the minimum ofl1.
It is in general unfeasible to optimize the eigenvalues w

respect to the learning parameterh (hw or h0) analytically
for arbitrary K, T, and %. However, one can make som
progress in certain limits ofK, T, and %, which we will
investigate below.

1. Large-K limit

The dominant terms for a large number of hidden units
all relevant quantities can be extracted by an asymptotic
ries expansion under the self-consistent ansatzhw5 O(1).
For the two relevant eigenvalues one makes the an
l i5 O(K21) and finds to leading order

l152
4

p

hwE1

K

~11T!2A112TE2

112T

pA112T2hwE1

p~11T!2hwE1E2
,

~B9a!
at

r
re
r-

h

r
e-

tz

l352
2

p

1

K

hwhuE1

hu~11T!21hwT%2F ~11T!2

~112T!3/2
1

T%2

~112T!5/2

2
E2

11TG , ~B9b!

with the auxiliary variables

E15expS 2
%2

112TD , ~B9c!

E25expS 2
T%2

~11T!~112T! D . ~B9d!

These define two critical learning rates

h w
max5p

A112T

E1
, ~B10a!

h w
crit5p

11T

E1E2
.h w

max, ~B10b!

wherel1 is identical to zero (h w
max) @corresponding to the

maximal learning rate that can also be obtained by solv
Eq. ~B5a!# and diverges (h w

crit), respectively. Inspecting Eqs
~B9! and ~B10! suggests that the natural rescaling for t
learning rates for nonzero teacher bias in this limit is

ĥw5hwE1 and ĥu5huE1 . ~B11!

We further mention in passing that Eq.~B9a! is only a valid
expansion ofl1 for hw,h w

crit , beyond which the ansat
l15 O(K -1) breaks down, a fact that becomes importa
when optimizing the dynamics with respect to the learn
rate.

For both parametrizations (h05hw5hu and hw with
hu5h u

opt→`) this optimization is performed by calculatin
both h r

opt andh m
opt, i.e., solving 2l35l1 anddl1 /dh50,

respectively. Sincel1 is only a function ofhw , h m
opt is iden-

tical for both parametrizations, whereash r
opt is in general

different. The candidates for the optimal learning rate ta
the form
h 0,r
opt5p~11T!TE 1

21$2~11T!2@~11T!~112T!12T%2#2~112T!5/2~21T1%2!E2%$~112T!3/2~11T!2

3@~11T!21T%2#22~11T!@2~112T!~11T!31T~112T12T2!%2#E21~112T!5/2E 2
2%21, ~B12a!

h w,r
opt5

p~11T!T

E1

~11T!@2~11T!2~112T!2%2#2~112T!5/2~21T!E2

~112T!3/2~11T!42~11T!@2~112T!~11T!31T%2#E21~112T!5/2E 2
2

, ~B12b!

h m
opt5hcrit2p

A11T

E1E2
@~11T!2A112TE2#1/2. ~B12c!
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To decide on the correct optimal learning ratehopt, one has
to evaluate whetherh r ,m

opt ,hcrit since the solution is other
wise spurious due to the breakdown of the ansatz forl1
abovehcrit . For the remaining valid candidates the optim
convergence rate is calculated. In general, one finds for g
T and % that hopt5h r

opt for T.Tcrit(%) and hopt5h m
opt for

T,Tcrit(%), whereTcrit(%) is defined byh r
opt5h m

opt.
To make further progress in theK→` limit, one can look

at several limits forT and %. For the limitsT→` and T
→0, one has to consider scaling ansa¨tze for the biases with
T that ensure that the biases remain meaningful. As
cussed in Sec. II and subsequently Sec. V C, one can a
two possible interpretations of the influence of the biases
are identical to leading orders forT→` but qualitatively
different for T→0. Theeffective bias(%5%̂A11T) keeps
the mean hidden unit output constant for allT. Theabscissa

(%5%̌AT) keeps the distance of the decision hyperplane~or
root! constant.

There are some further subtleties when studying vari
limits. The results for first taking theK→` limit and then
the large-T limit turn out to be equivalent, to leading order
K and T, to results where bothT and K go to their limits
simultaneously, i.e., taking the limitK→` with T5T`K,
whereT` controls the significance betweenT andK. How-
ever, there is a significant difference from the case where
T→` limit is taken first, which will also be studied below
For smallT on the other hand, the limitsK→` and T→0
are interchangeable to third order. Below, we therefore o
use those expansions that give us the more general solut

2. Small-T limit

In this limit, the slowest mode is associated withl1 and
the optimal learning rate is determined byh m

opt, which is
identical for both learning rate parametrizations and the le
ing terms of the interesting quantities are

hmax5pe%̂2F11S 12
K14

K
%̂2DTG , ~B13a!

hopt5hmax2pe%̂2FA~K21!%̂2

K
AT2

K22

K
%̂2TG ,

~B13b!

lopt524
T

KH %̂222AK21

K
%̂2AT

1
1

2F124%̂215
K24

K
%̂4GTJ . ~B13c!

The result for the model without biases can be recovere
leading order by simply setting%̂50. This shows that learn
ing speed is improved by a factor ofT for nonzero~finite!

bias since the two leading terms oflopt vanish for%̂50. In
this limit, the effective bias%̂ dominates the dynamics. It i
obvious that this expansion suffers from two drawbac
First, the limit of zero bias cannot be taken adequately
higher orders~this is especially obvious for higher-orde
terms inhopt, which have not been included here for brevi
l
en

s-
pt

at

s

e

ly
ns.

d-

to

.
r

where%̂ appears in the denominator!. Second, the expansio
predicts an unabated increase of the optimal converge
ratelopt with %̂, which is not the case for any finiteT, where
lopt levels off and eventually decays exponentionally. This
due to the implicit assumption in theT→0 expansion that
%̂2!2 ln T, i.e., the smallT terms always dominate the so
lution over exponentional terms in%̂. Below, we will address
the first of the inadequacies, by analyzing theT→0 limit,
with the scaling%̌5%/AT, i.e., % vanishes withT.

3. Small-T limit and %̌

As in the small-T limit with % finite, the slowest mode is
associated withl1 and both parametrizations are identical.
particular, one finds

hmax5pF11~11%̌2!T1
%̌4

2
T22

K14

2K
~112%̌2!T2G ,

~B14a!

hopt5hmax2pAK21

2K
A112%̌2 T, ~B14b!

lopt522
T2

K H ~112%̌2!

22F ~113%̌2!1AK21

2K
~112%̌2!3/2GTJ .

~B14c!

In this case, the results for the model without biases
recovered for all orders for%̌50. One can still see that th
learning is improved for nonzero biases, but for this scal
only by a factor of 112%̌2 and not by O(T). This expan-
sion holds only for%̌2!T due to the algebraic expansion o
all exponentional terms.

4. Large-T and -K limit „T5T`K…

For largeT, the two scaling ansa¨tze for % are equivalent
and the eigenvaluel3 has the smallest order. The optim
solution is therefore given by the solution ofh r

opt and the
leading terms of the relevant quantities become

hmax5pA2ATe%̂2/2F12
AT

K
e%̂2/2

1
114T`14T `

2 e%̂2
2%̂2

4T
G , ~B15a!

h 0
opt5hmax2

pA2

2AT~11%̂2!
e%̂2/2, ~B15b!

h w
opt5hmax2

pA2

2AT
e%̂2/2, ~B15c!
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l 0
opt52

2

KT~11%̂2!
F12

ATe%̂2/2

K
1

T `
2 e%̂2

1T`

T

1
%̂414%̂222

2T~11%̂2!
G , ~B15d!

l w
opt52

2

KT
F12

ATe%̂2/2

K
1

2T `
2 e%̂2

12T`1%̂222

2T
G .

~B15e!

The comparison for zero biases (%̂50) reveals that in this
limit, the existence of biases slows down the training proc
to leading order only in the case wherehu5hw . Further-
more, this decrease is surprisingly only algebraic in%̂. This
can be explained by the exponential growth of the optim
learning rates matching the gradient decrease due to the
ration of the error function for large%̂. Again, this solution is
only a good approximation for finiteK and T as long as
%̂2! ln K and %̂2! ln T.

5. Large-T limit

Unlike for smallT, the learning behavior changes qua
tatively in theT→` limit for finite K, as indicated by nu-
merical solutions. Againl3 controls the convergence an
one finds to leading order
d

re

ou

s

v.
s

l
tu-

hmax5pA2KF12
K21

AT
e2%̂2/2G , ~B16a!

h 0
opt5hmax2

pA2K

2~11%̂2!T
, ~B16b!

l 0
opt52

2exp~2%̂2/2!

~11%̂2!T3/2 F12
K21

AT
e2%̂2/2G , ~B16c!

h w
opt5hmax2

pA2K

2T
, ~B16d!

l w
opt52

2

T3/2
e2%̂2/2F12

K21

AT
e2%̂2/2G . ~B16e!

In this case, the optimal learning rate is independent of%̂ to
leading order inT. The exponentionally decreasing gradie
therefore directly affects the optimal convergence rate.
en,

itial

ne
are
ts
of

be-
@1# C. Cybenko, Math. Control Signals Syst.2, 303 ~1989!.
@2# D. Saad and S. A. Solla, Phys. Rev. E52, 4225~1995!.
@3# M. Biehl and H. Schwarze, J. Phys. A28, 643 ~1995!.
@4# D. Barber, D. Saad, and P. Sollich, Europhys. Lett.34, 151

~1996!.
@5# P. Sollich and D. Barber, inAdvances in Neural Information

Processing Systems, edited by M. C. Mozer, M. I. Jordan, an
T. Petsche~MIT Press, Cambridge, MA, 1997!, Vol. 9, p. 274;
P. Sollich and D. Barber, Europhys. Lett.38, 477 ~1997!.

@6# P. Riegler and M. Biehl, J. Phys. A28, L507 ~1995!.
@7# P. Riegler, Ph.D. thesis, University of Wu¨rzburg, 1997.
@8# A. H. L. West, D. Saad, and I. T. Nabney, inAdvances in

Neural Information Processing Systems~Ref. @5#!, p. 288.
@9# P. J. Werbos, Ph.D. thesis, Harvard University, 1974.

@10# D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Natu
~London! 323, 533~1986!; in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, edited by D.
E. Rumelhart, J. L. McClelland, and the PDP Research Gr
~MIT Press, Cambridge, MA, 1986!, Vol. 1, p. 318.

@11# T. Heskes, J. Phys. A27, 5145~1994!.
@12# C. W. Gardiner,Handbook of Stochastic Methods for Physic

Chemistry and the Natural Sciences~Springer-Verlag, Heidel-
berg, 1983!, Chap. 6.4, p. 195ff.

@13# M. Rattray and D. Saad~unpublished!.
@14# T. L. H. Watkin and J.-P. Nadal, J. Phys. A27, 1899~1994!.
@15# G. J. Bex, R. Serneels, and C. Van den Broeck, Phys. Re

51, 6309~1995!.
@16# P. Reimann and C. Van den Broeck, Phys. Rev. E53, 3989

~1996!.
p

,

E

@17# C. Van den Broeck and P. Reimann, Phys. Rev. Lett.76, 2188
~1996!.

@18# A. H. L. West and D. Saad, Phys. Rev. E56, 3426~1997!.
@19# D. Saad and M. Rattray, Phys. Rev. Lett.79, 2578~1997!.
@20# M. Biehl, P. Riegler, and C. Wo¨hler, J. Phys. A29, 4769

~1996!.
@21# D. Nguyen and B. Widrow, inIJCNN International Confer-

ence on Neural Networks~IEEE, Piscataway, NJ, 1990!, Vols.
1–3, Chap. 430, p. C21.

@22# Y. K. Kim and J. B. Ra, inIEEE International Joint Confer-
ence on Neural Networks~IEEE, Piscataway, NJ, 1991!, Vols.
1–3, Chap. 444, p. 2396.

@23# A. van Ooyen and B. Nienhuis, Neural Networks5, 465
~1992!.

@24# M. Lehtokangas, J. Saarinen, K. Kaski, and P. Huuhtan
Neural Comput.7, 982 ~1995!.

@25# The increase inQii leads to a rescaling of the overlapsRin

since the normalized overlapsR̂in were randomly fixed. Note
also that similar results are obtained when increasing the in
student lengths individually.

@26# For adiabatic elimination of the hidden-output weights o
finds similarly that the outputs of the student hidden units
suppressed initially by an equilibrium of the output weigh
close to 0@13#. However, this does not inhibit the progress
the student as in the case of the biases.

@27# Note that forT51, T w
crit also falls briefly belowT in the range

0.80&%̂&1.10 (1.15&%&1.50) andT 0
crit,T w

crit,T. The ratio
of the learning rates still drops due to the widening cap



,

d

verge
her

ap-

57 3291ROLE OF BIASES IN ON-LINE LEARNING OF TWO- . . .
tweenl 3
w andl 3

0 for increasing%̂.
@28# D. Saad and S. A. Solla, inAdvances in Neural Information

Processing Systems, edited by D. S. Touretzky, M. C. Mozer
and M. E. Hasselmo~MIT Press, Cambridge, MA, 1996!, Vol.
8, p. 302.

@29# D. Saad and S. A. Solla, inAdvances in Neural Information
Processing Systems, edited by M. C. Mozer, M. I. Jordan, an
T. Petsche~MIT Press, Cambridge, MA, 1997!, Vol. 9, p. 260.
@30# For zero degenerate teacher biases, the student biases con

exactly to zero, whereas for nonzero ‘‘degenerate’’ teac
biases one finds the most self-consistent results foreffective
biases, i.e., degenerate effective teacher biases lead to
proximately degenerate effective student biases.


